{"title":"基于bta结构和金属配位的强韧自愈弹性体。","authors":"Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li","doi":"10.1002/marc.202400913","DOIUrl":null,"url":null,"abstract":"<p><p>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn<sup>2+</sup> dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400913"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination.\",\"authors\":\"Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li\",\"doi\":\"10.1002/marc.202400913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn<sup>2+</sup> dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400913\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400913\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400913","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination.
Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn2+ dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.