基于bta结构和金属配位的强韧自愈弹性体。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li
{"title":"基于bta结构和金属配位的强韧自愈弹性体。","authors":"Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li","doi":"10.1002/marc.202400913","DOIUrl":null,"url":null,"abstract":"<p><p>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn<sup>2+</sup> dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400913"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination.\",\"authors\":\"Xinyi Huang, Yundong Lai, Haonan Li, Yuanxin He, Lingna Wang, Haoran Zhang, Yongfeng Xu, Qiuyu Zhang, Chunmei Li\",\"doi\":\"10.1002/marc.202400913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn<sup>2+</sup> dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400913\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400913\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400913","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

制造具有高强度、韧性和快速自愈性的弹性体仍然是一个关键的挑战。这些看似矛盾的属性需要创新的设计策略。本文提出了一种新颖的方法,即在弹性体中同时加入独特的三氢键单元,苯-1,3,5-三羧基酰胺(BTA)和咪唑- zn2 +动态配位。BTA通过三氢键自组装形成刚性纤维,诱导微相分离,显著提高了材料的性能。氢键和配位相互作用提供了动态可逆性和自愈性,实现了强度、韧性和愈合能力的平衡。通过改变BTA含量和配位交联程度,弹性体的强度在8.79-2.03 MPa之间可调,并且具有令人印象深刻的断裂伸长率高达700%。值得注意的是,在DMF在70°C下处理24小时后,它在被切成一半后恢复了94.6%的强度。此外,碳纳米管的集成使材料具有电阻传感功能,能够实时监测人体运动。总体而言,本研究为高韧性自愈弹性体的发展奠定了理论基础,并引入了创新的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong and Tough Self-Healing Elastomers via BTA-Mediated Microstructure and Metal-ligand Coordination.

Creating elastomers with high strength, toughness, and rapid self-healing remains a key challenge. These seemingly contradictory properties require innovative design strategies. Herein, a novel approach is proposed by simultaneously incorporating a unique triple hydrogen bond unit, benzene-1,3,5-tricarboxamide (BTA), and imidazole-Zn2+ dynamic coordination into the elastomer. The BTA forms rigid fibers through self-assembly via triple hydrogen bonding, inducing microphase separation that significantly enhances the material's properties. Hydrogen bonds and coordination interactions provide dynamic reversibility and self-healing, achieving a balance of strength, toughness, and healing capabilities. By varying the BTA content and the degree of coordination crosslinking, the elastomer's strength is tunable within 8.79-2.03 MPa, and it boasts an impressive elongation at a break of up to 700%. Remarkably, it recovers 94.6% of its strength after being cut in half, facilitated by treatment with DMF at 70 °C for 24 h. Furthermore, the integration of carbon nanotubes endows the material with resistance-sensing, enabling real-time monitoring of human movements. Overall, this study lays a theoretical foundation and introduces innovative concepts for the development of high-toughness self-healing elastomers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信