{"title":"从光谱数据可变性到最佳预处理:利用不同粒度杏仁粉掺假的多变量误差。","authors":"Barbara Giussani, Manuel Monti, Jordi Riu","doi":"10.1007/s00216-024-05710-1","DOIUrl":null,"url":null,"abstract":"<p><p>Analysing samples in their original form is increasingly crucial in analytical chemistry due to the need for efficient and sustainable practices. Analytical chemists face the dual challenge of achieving accuracy while detecting minute analyte quantities in complex matrices, often requiring sample pretreatment. This necessitates the use of advanced techniques with low detection limits, but the emphasis on sensitivity can conflict with efforts to simplify procedures and reduce solvent use. This article discusses the shift towards green analytical methods, focusing on portable spectroscopic techniques in the near-infrared (NIR) region. A case study involving the prediction of adulteration in almond flour with bitter almond flour illustrates the importance of particle size and the integration between the sample and the instrument. The study emphasizes the necessity of investigating the multivariate error associated with raw data to enhance data preprocessing strategies. This research provides valuable insights for professionals in the field, presenting a methodology applicable to a broad range of analytical applications while underscoring the critical role of raw data analysis in achieving accurate and reliable results.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From spectroscopic data variability to optimal preprocessing: leveraging multivariate error in almond powder adulteration of different grain size.\",\"authors\":\"Barbara Giussani, Manuel Monti, Jordi Riu\",\"doi\":\"10.1007/s00216-024-05710-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysing samples in their original form is increasingly crucial in analytical chemistry due to the need for efficient and sustainable practices. Analytical chemists face the dual challenge of achieving accuracy while detecting minute analyte quantities in complex matrices, often requiring sample pretreatment. This necessitates the use of advanced techniques with low detection limits, but the emphasis on sensitivity can conflict with efforts to simplify procedures and reduce solvent use. This article discusses the shift towards green analytical methods, focusing on portable spectroscopic techniques in the near-infrared (NIR) region. A case study involving the prediction of adulteration in almond flour with bitter almond flour illustrates the importance of particle size and the integration between the sample and the instrument. The study emphasizes the necessity of investigating the multivariate error associated with raw data to enhance data preprocessing strategies. This research provides valuable insights for professionals in the field, presenting a methodology applicable to a broad range of analytical applications while underscoring the critical role of raw data analysis in achieving accurate and reliable results.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-024-05710-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05710-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
From spectroscopic data variability to optimal preprocessing: leveraging multivariate error in almond powder adulteration of different grain size.
Analysing samples in their original form is increasingly crucial in analytical chemistry due to the need for efficient and sustainable practices. Analytical chemists face the dual challenge of achieving accuracy while detecting minute analyte quantities in complex matrices, often requiring sample pretreatment. This necessitates the use of advanced techniques with low detection limits, but the emphasis on sensitivity can conflict with efforts to simplify procedures and reduce solvent use. This article discusses the shift towards green analytical methods, focusing on portable spectroscopic techniques in the near-infrared (NIR) region. A case study involving the prediction of adulteration in almond flour with bitter almond flour illustrates the importance of particle size and the integration between the sample and the instrument. The study emphasizes the necessity of investigating the multivariate error associated with raw data to enhance data preprocessing strategies. This research provides valuable insights for professionals in the field, presenting a methodology applicable to a broad range of analytical applications while underscoring the critical role of raw data analysis in achieving accurate and reliable results.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.