{"title":"灵敏胰蛋白酶传感器基于微尺度离子电流的调节,通过选择性水解填充在微通道中的水凝胶进行整流。","authors":"Huabin Cai, Runhao Yuan, Shaokun Huang, Yanling Huang, Cuiying Lin, Yue Lin, Fang Luo, Zhenyu Lin, Lixin Wang","doi":"10.1016/j.talanta.2024.127422","DOIUrl":null,"url":null,"abstract":"<p><p>Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127422"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel.\",\"authors\":\"Huabin Cai, Runhao Yuan, Shaokun Huang, Yanling Huang, Cuiying Lin, Yue Lin, Fang Luo, Zhenyu Lin, Lixin Wang\",\"doi\":\"10.1016/j.talanta.2024.127422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"285 \",\"pages\":\"127422\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127422\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Sensitive trypsin sensor based on the regulation of microscale ionic current rectification by the selectivity hydrolysis of hydrogel filled in microchannel.
Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly. Subsequently, the BSAG hydrogel-filled microchannel was immersed in a trypsin solution to hydrolyze the BSA within the BSAG hydrogel. This process changes the space charge density and pore size of the BSAG hydrogel-filled microchannel, leading to a change in microscale ICR, which can be used for quantifying trypsin. Then the key parameters affecting the sensing performance such as the concentration of BSA, strength of the electrolyte, pH and reaction time were optimized. The detection range was from 10.0 ng/mL to 100 μg/mL with a detection limit as low as 2.55 ng/mL (S/N = 3). Due to the distinctive three-dimensional pore structure of the hydrogel and the specificity of trypsin for BSA hydrolysis, the sensor exhibits high sensitivity and specificity, as well as remarkable reproducibility and stability. This sensor has been effectively used to measure trypsin levels in human serum samples.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.