用于抗体药物电化学检测的生物驱动RAFT聚合扩增平台。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Talanta Pub Date : 2025-04-01 Epub Date: 2024-12-19 DOI:10.1016/j.talanta.2024.127431
Jianwen Wan, Mengge Wang, Songmin Chen, Xiyao Zhang, Wenhui Xu, Di Wu, Qiong Hu, Li Niu
{"title":"用于抗体药物电化学检测的生物驱动RAFT聚合扩增平台。","authors":"Jianwen Wan, Mengge Wang, Songmin Chen, Xiyao Zhang, Wenhui Xu, Di Wu, Qiong Hu, Li Niu","doi":"10.1016/j.talanta.2024.127431","DOIUrl":null,"url":null,"abstract":"<p><p>The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels. The BDRP-based signal amplification relies on the reduction of RAFT agents by NADH coenzymes into the carbon-centered radicals, which can propagate efficiently into long polymer chains by reacting with the ferrocene-derivated monomers, recruiting numerous redox labels to the glycan chains of antibody drugs. The BDRP is conducted at the physiological temperature (i.e., 37 °C) and in the absence of external stimuli or radical sources, holding the advantages of biological compatibility and desirable simplicity over conventional RAFT polymerization approaches. The developed platform is highly selective and the detection limit in the presence of rituximab as the target was determined to be 0.14 ng/mL. Moreover, the applicability of the BDRP-based platform in the sensitive assay of antibody drugs in serum samples has been validated. In view of the biocompatibility, desirable simplicity, and cost-effectiveness, the BDRP-based platform shows great promise in the quantitative assay of antibody drugs.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127431"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biologically-driven RAFT polymerization-amplified platform for electrochemical detection of antibody drugs.\",\"authors\":\"Jianwen Wan, Mengge Wang, Songmin Chen, Xiyao Zhang, Wenhui Xu, Di Wu, Qiong Hu, Li Niu\",\"doi\":\"10.1016/j.talanta.2024.127431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels. The BDRP-based signal amplification relies on the reduction of RAFT agents by NADH coenzymes into the carbon-centered radicals, which can propagate efficiently into long polymer chains by reacting with the ferrocene-derivated monomers, recruiting numerous redox labels to the glycan chains of antibody drugs. The BDRP is conducted at the physiological temperature (i.e., 37 °C) and in the absence of external stimuli or radical sources, holding the advantages of biological compatibility and desirable simplicity over conventional RAFT polymerization approaches. The developed platform is highly selective and the detection limit in the presence of rituximab as the target was determined to be 0.14 ng/mL. Moreover, the applicability of the BDRP-based platform in the sensitive assay of antibody drugs in serum samples has been validated. In view of the biocompatibility, desirable simplicity, and cost-effectiveness, the BDRP-based platform shows great promise in the quantitative assay of antibody drugs.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"285 \",\"pages\":\"127431\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127431\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

个体化给药和药代动力学分析是免疫治疗中抗体药物安全使用的组成部分。在这里,我们提出了一个高灵敏度和选择性检测抗体药物的电化学平台,利用肽模位的亲和力捕获和生物驱动的RAFT聚合(BDRP)的信号放大。简而言之,基于bdrp的平台包括通过肽模位捕获抗体药物,将多个可逆的添加-碎片链转移(RAFT)试剂标记到抗体药物的聚糖链上,以及bdrp支持的许多氧化还原标签的受控募集。基于bdrp的信号扩增依赖于NADH辅酶将RAFT试剂还原为以碳为中心的自由基,这些自由基可以通过与二茂铁衍生的单体反应有效地传播成长聚合物链,在抗体药物的聚糖链上招募大量的氧化还原标签。BDRP是在生理温度(即37°C)下进行的,没有外部刺激或自由基源,与传统的RAFT聚合方法相比,具有生物相容性和理想的简单性的优势。开发的平台具有高度选择性,在美罗华作为靶标存在时的检出限为0.14 ng/mL。此外,基于bdrp的平台在血清样品抗体药物敏感分析中的适用性也得到了验证。基于bdrp的平台具有良好的生物相容性、简单性和成本效益,在抗体药物的定量分析中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biologically-driven RAFT polymerization-amplified platform for electrochemical detection of antibody drugs.

The individualized administration and pharmacokinetics profiling are integral to the safe use of antibody drugs in immunotherapy. Here, we propose an electrochemical platform for the highly sensitive and selective detection of antibody drugs, taking advantage of the affinity capture by the peptide mimotopes together with the signal amplification by the biologically-driven RAFT polymerization (BDRP). Briefly, the BDRP-based platform involves the capture of antibody drugs by peptide mimotopes, the labeling of multiple reversible addition-fragmentation chain-transfer (RAFT) agents to the glycan chains of antibody drugs, and the BDRP-enabled controlled recruitment of numerous redox labels. The BDRP-based signal amplification relies on the reduction of RAFT agents by NADH coenzymes into the carbon-centered radicals, which can propagate efficiently into long polymer chains by reacting with the ferrocene-derivated monomers, recruiting numerous redox labels to the glycan chains of antibody drugs. The BDRP is conducted at the physiological temperature (i.e., 37 °C) and in the absence of external stimuli or radical sources, holding the advantages of biological compatibility and desirable simplicity over conventional RAFT polymerization approaches. The developed platform is highly selective and the detection limit in the presence of rituximab as the target was determined to be 0.14 ng/mL. Moreover, the applicability of the BDRP-based platform in the sensitive assay of antibody drugs in serum samples has been validated. In view of the biocompatibility, desirable simplicity, and cost-effectiveness, the BDRP-based platform shows great promise in the quantitative assay of antibody drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信