Xuan Li , Guohua Liang , Bin He , Yawei Ning , Yuesuo Yang , Lei Wang , Guoli Wang
{"title":"2000年至2023年使用机器学习的地下水污染研究的最新进展:文献计量分析。","authors":"Xuan Li , Guohua Liang , Bin He , Yawei Ning , Yuesuo Yang , Lei Wang , Guoli Wang","doi":"10.1016/j.envres.2024.120683","DOIUrl":null,"url":null,"abstract":"<div><div>Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions. The analysis reveals a growing trend in publications over the 24-year period, with a sharp expansion since 2020. China, the USA, India, and Iran are identified as the leading contributors to publications and citations, with prominent institutions such as Jilin University, the United States Geological Survey, and the University of Tabriz. Moreover, keyword frequency analysis indicates that principal component analysis (PCA) is the most commonly used method, followed by artificial neural network (ANN) and hierarchical clustering analysis (HCA). The most studied groundwater pollutants include nitrate, arsenic, heavy metals, and fluoride. As machine learning has rapidly advanced, research focuses have evolved from fundamental tasks like hydrochemical evolution analysis, water quality index evaluation, and groundwater vulnerability assessments to more complex issues, such as pollutant concentration prediction, pollution risk assessment, and pollution source identification. Despite these advances, challenges related to data quality, data scarcity, model generalization, and interpretability remain. Future research should prioritize data sharing, improving model interpretability, broadening research horizons and advancing theory-guided machine learning. These will enhance our understanding of groundwater pollution mechanisms, and ultimately facilitate more effective pollution control and remediation strategies. In summary, this review provides valuable insights and suggestions for researchers and policymakers working in this critical field.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"267 ","pages":"Article 120683"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in groundwater pollution research using machine learning from 2000 to 2023: A bibliometric analysis\",\"authors\":\"Xuan Li , Guohua Liang , Bin He , Yawei Ning , Yuesuo Yang , Lei Wang , Guoli Wang\",\"doi\":\"10.1016/j.envres.2024.120683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions. The analysis reveals a growing trend in publications over the 24-year period, with a sharp expansion since 2020. China, the USA, India, and Iran are identified as the leading contributors to publications and citations, with prominent institutions such as Jilin University, the United States Geological Survey, and the University of Tabriz. Moreover, keyword frequency analysis indicates that principal component analysis (PCA) is the most commonly used method, followed by artificial neural network (ANN) and hierarchical clustering analysis (HCA). The most studied groundwater pollutants include nitrate, arsenic, heavy metals, and fluoride. As machine learning has rapidly advanced, research focuses have evolved from fundamental tasks like hydrochemical evolution analysis, water quality index evaluation, and groundwater vulnerability assessments to more complex issues, such as pollutant concentration prediction, pollution risk assessment, and pollution source identification. Despite these advances, challenges related to data quality, data scarcity, model generalization, and interpretability remain. Future research should prioritize data sharing, improving model interpretability, broadening research horizons and advancing theory-guided machine learning. These will enhance our understanding of groundwater pollution mechanisms, and ultimately facilitate more effective pollution control and remediation strategies. In summary, this review provides valuable insights and suggestions for researchers and policymakers working in this critical field.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"267 \",\"pages\":\"Article 120683\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124025878\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124025878","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Recent advances in groundwater pollution research using machine learning from 2000 to 2023: A bibliometric analysis
Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions. The analysis reveals a growing trend in publications over the 24-year period, with a sharp expansion since 2020. China, the USA, India, and Iran are identified as the leading contributors to publications and citations, with prominent institutions such as Jilin University, the United States Geological Survey, and the University of Tabriz. Moreover, keyword frequency analysis indicates that principal component analysis (PCA) is the most commonly used method, followed by artificial neural network (ANN) and hierarchical clustering analysis (HCA). The most studied groundwater pollutants include nitrate, arsenic, heavy metals, and fluoride. As machine learning has rapidly advanced, research focuses have evolved from fundamental tasks like hydrochemical evolution analysis, water quality index evaluation, and groundwater vulnerability assessments to more complex issues, such as pollutant concentration prediction, pollution risk assessment, and pollution source identification. Despite these advances, challenges related to data quality, data scarcity, model generalization, and interpretability remain. Future research should prioritize data sharing, improving model interpretability, broadening research horizons and advancing theory-guided machine learning. These will enhance our understanding of groundwater pollution mechanisms, and ultimately facilitate more effective pollution control and remediation strategies. In summary, this review provides valuable insights and suggestions for researchers and policymakers working in this critical field.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.