PLA击穿和PTMC形成的协同途径:一锅共晶驱动的再循环机制。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sébastien Moins, Prof. Dr. Olivier Coulembier
{"title":"PLA击穿和PTMC形成的协同途径:一锅共晶驱动的再循环机制。","authors":"Sébastien Moins,&nbsp;Prof. Dr. Olivier Coulembier","doi":"10.1002/anie.202421150","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel one-pot strategy for the chemical valorization of poly(lactic acid) (PLA), coupling its base-catalyzed depolymerization with the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). The process exploits an eutectic mixture of lactide (LA) and TMC, which lowers the thermal input required for PLA degradation. Using potassium aryloxide (KOAr<sup><i>t</i>Bu</sup>) as a bifunctional catalyst, the PLA is first quickly hydrolyzed into oligomers or lactic acid, which subsequently initiate the slower polymerization of TMC. Notably, this transformation operates in the presence of residual water, eliminating the need for tedious drying steps. The method achieves selective PLA breakdown conversion and produces (oligo)lactic acid end-capped poly(trimethylene carbonate) (PTMC) with tunable molar mass, depending on water content.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 10","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Pathways in PLA Breakdown and PTMC Formation: A One-Pot Eutectic-Driven Recycling Mechanism\",\"authors\":\"Sébastien Moins,&nbsp;Prof. Dr. Olivier Coulembier\",\"doi\":\"10.1002/anie.202421150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a novel one-pot strategy for the chemical valorization of poly(lactic acid) (PLA), coupling its base-catalyzed depolymerization with the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). The process exploits an eutectic mixture of lactide (LA) and TMC, which lowers the thermal input required for PLA degradation. Using potassium aryloxide (KOAr<sup><i>t</i>Bu</sup>) as a bifunctional catalyst, the PLA is first quickly hydrolyzed into oligomers or lactic acid, which subsequently initiate the slower polymerization of TMC. Notably, this transformation operates in the presence of residual water, eliminating the need for tedious drying steps. The method achieves selective PLA breakdown conversion and produces (oligo)lactic acid end-capped poly(trimethylene carbonate) (PTMC) with tunable molar mass, depending on water content.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 10\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202421150\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202421150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新的聚乳酸(PLA)化学增值的一锅策略,将其碱催化解聚与碳酸三亚甲基(TMC)的开环聚合(ROP)偶联。该工艺利用丙交酯(LA)和TMC的共晶混合物,降低了PLA降解所需的热输入。使用芳基氧化物钾(KOArtBu)作为双功能催化剂,PLA首先被快速水解成低聚物或乳酸,随后引发TMC的较慢聚合。值得注意的是,这种转变在残余水存在的情况下进行,消除了繁琐的干燥步骤的需要。该方法实现了选择性PLA击穿转化,并生产(低聚)乳酸端盖聚(三亚甲基碳酸酯)(PTMC),其摩尔质量可调,取决于水的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Pathways in PLA Breakdown and PTMC Formation: A One-Pot Eutectic-Driven Recycling Mechanism

Synergistic Pathways in PLA Breakdown and PTMC Formation: A One-Pot Eutectic-Driven Recycling Mechanism

This study introduces a novel one-pot strategy for the chemical valorization of poly(lactic acid) (PLA), coupling its base-catalyzed depolymerization with the ring-opening polymerization (ROP) of trimethylene carbonate (TMC). The process exploits an eutectic mixture of lactide (LA) and TMC, which lowers the thermal input required for PLA degradation. Using potassium aryloxide (KOArtBu) as a bifunctional catalyst, the PLA is first quickly hydrolyzed into oligomers or lactic acid, which subsequently initiate the slower polymerization of TMC. Notably, this transformation operates in the presence of residual water, eliminating the need for tedious drying steps. The method achieves selective PLA breakdown conversion and produces (oligo)lactic acid end-capped poly(trimethylene carbonate) (PTMC) with tunable molar mass, depending on water content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信