靶向递送核酸用于癌症治疗的肽纳米载体。

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Bioconjugate Chemistry Pub Date : 2025-01-15 Epub Date: 2024-12-23 DOI:10.1021/acs.bioconjchem.4c00324
Chunli Song, Leying Jiang, Xinrui Sha, Zijun Jiao, Yun Xing, Xi Li, Xinyu Li, Zhiyong Yao, Zigang Li, Dongyuan Wang, Lixiang Zhang, Yaping Zhang, Feng Yin
{"title":"靶向递送核酸用于癌症治疗的肽纳米载体。","authors":"Chunli Song, Leying Jiang, Xinrui Sha, Zijun Jiao, Yun Xing, Xi Li, Xinyu Li, Zhiyong Yao, Zigang Li, Dongyuan Wang, Lixiang Zhang, Yaping Zhang, Feng Yin","doi":"10.1021/acs.bioconjchem.4c00324","DOIUrl":null,"url":null,"abstract":"<p><p>Peptides have been extensively studied in nanomedicine with great bioactivity and biocompatibility; however, their poor cell-membrane-penetrating properties and nonselectivity greatly limit their clinical applications. In this study, tumor-targeting therapy was achieved by modifying our previously developed efficient peptide vector with the cancer-targeting peptide RGD, enabling it to specifically target tumor cells with a high expression of RGD-binding receptors. B-cell lymphoma-2 antisense oligonucleotides were selected as the target model to validate the effectiveness of the delivery carriers. Results demonstrated that this delivery system can be efficiently and selectively taken up by RGD receptor-positive cells (α<sub>v</sub>β<sub>3</sub> integrin receptor), further inducing effective target gene knockdown. Overall, this system provided a promising strategy for the targeted delivery of nucleic acid drugs.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"25-33"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide Nanocarriers for Targeted Delivery of Nucleic Acids for Cancer Therapy.\",\"authors\":\"Chunli Song, Leying Jiang, Xinrui Sha, Zijun Jiao, Yun Xing, Xi Li, Xinyu Li, Zhiyong Yao, Zigang Li, Dongyuan Wang, Lixiang Zhang, Yaping Zhang, Feng Yin\",\"doi\":\"10.1021/acs.bioconjchem.4c00324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptides have been extensively studied in nanomedicine with great bioactivity and biocompatibility; however, their poor cell-membrane-penetrating properties and nonselectivity greatly limit their clinical applications. In this study, tumor-targeting therapy was achieved by modifying our previously developed efficient peptide vector with the cancer-targeting peptide RGD, enabling it to specifically target tumor cells with a high expression of RGD-binding receptors. B-cell lymphoma-2 antisense oligonucleotides were selected as the target model to validate the effectiveness of the delivery carriers. Results demonstrated that this delivery system can be efficiently and selectively taken up by RGD receptor-positive cells (α<sub>v</sub>β<sub>3</sub> integrin receptor), further inducing effective target gene knockdown. Overall, this system provided a promising strategy for the targeted delivery of nucleic acid drugs.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"25-33\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00324\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00324","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

多肽具有良好的生物活性和生物相容性,在纳米医学领域得到了广泛的研究;然而,它们较差的细胞膜穿透性和非选择性极大地限制了它们的临床应用。在本研究中,肿瘤靶向治疗是通过修饰我们之前开发的高效肽载体,用癌症靶向肽RGD,使其能够特异性靶向高表达RGD结合受体的肿瘤细胞来实现的。选择b细胞淋巴瘤-2反义寡核苷酸作为靶模型,验证递送载体的有效性。结果表明,该传递系统可被RGD受体阳性细胞(αvβ3整合素受体)高效、选择性地吸收,进一步诱导有效的靶基因敲低。总的来说,该系统为核酸药物的靶向递送提供了一个有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peptide Nanocarriers for Targeted Delivery of Nucleic Acids for Cancer Therapy.

Peptides have been extensively studied in nanomedicine with great bioactivity and biocompatibility; however, their poor cell-membrane-penetrating properties and nonselectivity greatly limit their clinical applications. In this study, tumor-targeting therapy was achieved by modifying our previously developed efficient peptide vector with the cancer-targeting peptide RGD, enabling it to specifically target tumor cells with a high expression of RGD-binding receptors. B-cell lymphoma-2 antisense oligonucleotides were selected as the target model to validate the effectiveness of the delivery carriers. Results demonstrated that this delivery system can be efficiently and selectively taken up by RGD receptor-positive cells (αvβ3 integrin receptor), further inducing effective target gene knockdown. Overall, this system provided a promising strategy for the targeted delivery of nucleic acid drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信