Wenjing Qian, Xianghui Feng, Yanxue Wang, Ahmet Nazligul, Yiwen Lu, Mingqing Wang, Wei Wu, Kwang Leong Choy
{"title":"基于SnO2的可调谐透明导体:共掺杂的理论与实验研究。","authors":"Wenjing Qian, Xianghui Feng, Yanxue Wang, Ahmet Nazligul, Yiwen Lu, Mingqing Wang, Wei Wu, Kwang Leong Choy","doi":"10.1021/acsomega.4c07860","DOIUrl":null,"url":null,"abstract":"<p><p>Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO<sub>2</sub>, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs. Here, we performed a set of hybrid-exchange density functional theory calculations on the two-element and three-element codoped SnO<sub>2</sub> by using Sr, Ta, Al, Ga, V, and Nb, which were then validated by the relevant experimental works on SnO<sub>2</sub>. As predicted by the first-principles calculations, the controllability of the electronic states to be n- or p-type can be demonstrated experimentally by varying the relative doping concentration between donors (Ta/Nb) and acceptors (Al/Ga). One of the main advantages for these codoping methods is that the charge neutrality problem caused by the dopant can be circumvented. The thin films fabricated showed a low sheet resistance (down to ∼450 Ω<b>/□</b>) and a high optical transparency (above 80%). The combination of our calculations and experimental material fabrication and characterizations has shown a great potential for codoping SnO<sub>2</sub> for (i) the efficient processing of the integrated circuit composed of both p-type and n-type transistors (using the same target precursors during the deposition) and (ii) a good lattice matching for p-n junctions. Most importantly, our calculations, supported by the experimental works, point to a promising route to accelerate the discovery process for the alternative cost-effective and high-performance indium-free TCOs using computational material design.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49674-49682"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656248/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tunable Transparent Conductors Based on SnO<sub>2</sub>: Theoretical and Experimental Studies of Codoping.\",\"authors\":\"Wenjing Qian, Xianghui Feng, Yanxue Wang, Ahmet Nazligul, Yiwen Lu, Mingqing Wang, Wei Wu, Kwang Leong Choy\",\"doi\":\"10.1021/acsomega.4c07860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO<sub>2</sub>, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs. Here, we performed a set of hybrid-exchange density functional theory calculations on the two-element and three-element codoped SnO<sub>2</sub> by using Sr, Ta, Al, Ga, V, and Nb, which were then validated by the relevant experimental works on SnO<sub>2</sub>. As predicted by the first-principles calculations, the controllability of the electronic states to be n- or p-type can be demonstrated experimentally by varying the relative doping concentration between donors (Ta/Nb) and acceptors (Al/Ga). One of the main advantages for these codoping methods is that the charge neutrality problem caused by the dopant can be circumvented. The thin films fabricated showed a low sheet resistance (down to ∼450 Ω<b>/□</b>) and a high optical transparency (above 80%). The combination of our calculations and experimental material fabrication and characterizations has shown a great potential for codoping SnO<sub>2</sub> for (i) the efficient processing of the integrated circuit composed of both p-type and n-type transistors (using the same target precursors during the deposition) and (ii) a good lattice matching for p-n junctions. Most importantly, our calculations, supported by the experimental works, point to a promising route to accelerate the discovery process for the alternative cost-effective and high-performance indium-free TCOs using computational material design.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 50\",\"pages\":\"49674-49682\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c07860\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c07860","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tunable Transparent Conductors Based on SnO2: Theoretical and Experimental Studies of Codoping.
Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO2, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs. Here, we performed a set of hybrid-exchange density functional theory calculations on the two-element and three-element codoped SnO2 by using Sr, Ta, Al, Ga, V, and Nb, which were then validated by the relevant experimental works on SnO2. As predicted by the first-principles calculations, the controllability of the electronic states to be n- or p-type can be demonstrated experimentally by varying the relative doping concentration between donors (Ta/Nb) and acceptors (Al/Ga). One of the main advantages for these codoping methods is that the charge neutrality problem caused by the dopant can be circumvented. The thin films fabricated showed a low sheet resistance (down to ∼450 Ω/□) and a high optical transparency (above 80%). The combination of our calculations and experimental material fabrication and characterizations has shown a great potential for codoping SnO2 for (i) the efficient processing of the integrated circuit composed of both p-type and n-type transistors (using the same target precursors during the deposition) and (ii) a good lattice matching for p-n junctions. Most importantly, our calculations, supported by the experimental works, point to a promising route to accelerate the discovery process for the alternative cost-effective and high-performance indium-free TCOs using computational material design.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.