二氧化硅纳米颗粒增强阴离子表面活性剂在高盐度和高温度条件下的水稳定性。

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-12-04 eCollection Date: 2024-12-17 DOI:10.1021/acsomega.4c08484
Mohammed H Alyousef, Muhammad Shahzad Kamal, Mobeen Murtaza, Syed Muhammad Shakil Hussain, Arshad Raza, Shirish Patil, Mohamed Mahmoud
{"title":"二氧化硅纳米颗粒增强阴离子表面活性剂在高盐度和高温度条件下的水稳定性。","authors":"Mohammed H Alyousef, Muhammad Shahzad Kamal, Mobeen Murtaza, Syed Muhammad Shakil Hussain, Arshad Raza, Shirish Patil, Mohamed Mahmoud","doi":"10.1021/acsomega.4c08484","DOIUrl":null,"url":null,"abstract":"<p><p>In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO<sub>2</sub>) nanoparticles (NPs). Our optimized formulation effectively prevents surfactant precipitation and NP aggregation, demonstrating stability in brine with salinity as high as 57,000 ppm and temperatures up to 70 °C, thus addressing the salt tolerance issues seen with conventional anionic surfactants like sodium dodecyl sulfate (SDS). To validate our formulation, we employed multiple experimental techniques, including turbidity, ζ-potential (ZP), and hydrodynamic diameter (HDD) measurements, which confirmed the efficacy of our approach. Results indicated that an optimal SiO<sub>2</sub> NP concentration (0.01 wt %) significantly enhanced SDS stability, with no observed aggregation or precipitation over 7 days. High absolute ZP values (>25 mV), a small HDD (∼37 nm), and a consistent turbidity profile underscored the stability and dispersion of the formulation. This nanoparticle-based method offers a cost-effective and sustainable solution for cEOR, providing enhanced surfactant stability and improved NP dispersibility under high-salinity and high-temperature conditions, representing a valuable advancement in chemical-enhanced oil recovery technology.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49804-49815"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Aqueous Stability of Anionic Surfactants in High Salinity and Temperature Conditions with SiO<sub>2</sub> Nanoparticles.\",\"authors\":\"Mohammed H Alyousef, Muhammad Shahzad Kamal, Mobeen Murtaza, Syed Muhammad Shakil Hussain, Arshad Raza, Shirish Patil, Mohamed Mahmoud\",\"doi\":\"10.1021/acsomega.4c08484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO<sub>2</sub>) nanoparticles (NPs). Our optimized formulation effectively prevents surfactant precipitation and NP aggregation, demonstrating stability in brine with salinity as high as 57,000 ppm and temperatures up to 70 °C, thus addressing the salt tolerance issues seen with conventional anionic surfactants like sodium dodecyl sulfate (SDS). To validate our formulation, we employed multiple experimental techniques, including turbidity, ζ-potential (ZP), and hydrodynamic diameter (HDD) measurements, which confirmed the efficacy of our approach. Results indicated that an optimal SiO<sub>2</sub> NP concentration (0.01 wt %) significantly enhanced SDS stability, with no observed aggregation or precipitation over 7 days. High absolute ZP values (>25 mV), a small HDD (∼37 nm), and a consistent turbidity profile underscored the stability and dispersion of the formulation. This nanoparticle-based method offers a cost-effective and sustainable solution for cEOR, providing enhanced surfactant stability and improved NP dispersibility under high-salinity and high-temperature conditions, representing a valuable advancement in chemical-enhanced oil recovery technology.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"9 50\",\"pages\":\"49804-49815\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c08484\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08484","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在化学提高采收率(cEOR)中,表面活性剂得到了广泛的应用,但在高盐度的盐水中,表面活性剂的稳定性面临着重大挑战,它们经常会降解或沉淀。现有的方法,如添加共表面活性剂,与阴离子表面活性剂的相容性有限,并且引起了经济问题,因此需要更强大的解决方案。本研究介绍了一种通过添加二氧化硅纳米颗粒(NPs)来增强阴离子表面活性剂在极端盐度条件下的稳定性的新方法。我们优化的配方有效地防止了表面活性剂沉淀和NP聚集,在盐度高达57,000 ppm、温度高达70°C的盐水中表现出稳定性,从而解决了传统阴离子表面活性剂(如十二烷基硫酸钠(SDS))的耐盐性问题。为了验证我们的配方,我们采用了多种实验技术,包括浊度,ζ-势(ZP)和水动力直径(HDD)测量,这证实了我们方法的有效性。结果表明,最佳SiO2 NP浓度(0.01 wt %)显著提高了SDS的稳定性,在7天内没有观察到聚集或沉淀。高绝对ZP值(>25 mV),小HDD (~ 37 nm)和一致的浊度分布强调了配方的稳定性和分散性。这种基于纳米颗粒的方法为cEOR提供了一种具有成本效益和可持续发展的解决方案,在高盐度和高温条件下提供了增强的表面活性剂稳定性和改善的NP分散性,代表了化学提高采油技术的有价值的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Aqueous Stability of Anionic Surfactants in High Salinity and Temperature Conditions with SiO2 Nanoparticles.

In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO2) nanoparticles (NPs). Our optimized formulation effectively prevents surfactant precipitation and NP aggregation, demonstrating stability in brine with salinity as high as 57,000 ppm and temperatures up to 70 °C, thus addressing the salt tolerance issues seen with conventional anionic surfactants like sodium dodecyl sulfate (SDS). To validate our formulation, we employed multiple experimental techniques, including turbidity, ζ-potential (ZP), and hydrodynamic diameter (HDD) measurements, which confirmed the efficacy of our approach. Results indicated that an optimal SiO2 NP concentration (0.01 wt %) significantly enhanced SDS stability, with no observed aggregation or precipitation over 7 days. High absolute ZP values (>25 mV), a small HDD (∼37 nm), and a consistent turbidity profile underscored the stability and dispersion of the formulation. This nanoparticle-based method offers a cost-effective and sustainable solution for cEOR, providing enhanced surfactant stability and improved NP dispersibility under high-salinity and high-temperature conditions, representing a valuable advancement in chemical-enhanced oil recovery technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信