电场增强下向受热面沸腾传热性能的实验研究

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Xieyang Zhang, Jiayu Zuo, Qing Li, Bin Liu, Wangfang Du
{"title":"电场增强下向受热面沸腾传热性能的实验研究","authors":"Xieyang Zhang,&nbsp;Jiayu Zuo,&nbsp;Qing Li,&nbsp;Bin Liu,&nbsp;Wangfang Du","doi":"10.1007/s12217-024-10154-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper experimentally investigated the impact of the electric field strength (<i>E</i>), electrode installation heights (<i>H</i>), and the electrode shape on enhanced pool boiling heat transfer performance under a downward heating surface with an electric field. It is observed that the critical heat flux (CHF) generally increases with increasing electric field strength. For instance, for the mesh electrode, the CHF is increased by 100.0%, 240.0%, 340.0%, and 440.0% at <i>E</i> = 0.35 × 10<sup>6</sup> V/m, 0.70 × 10<sup>6</sup> V/m, 1.05 × 10<sup>6</sup> V/m, and 1.40 × 10<sup>6</sup> V/m, respectively, compared to <i>E</i> = 0 V/m. Furthermore, the electrodes hinder the detachment of vapor bubbles, which becomes more pronounced when the electrode installation height is low. At the same time, the more micro-ribs of the electrodes and the denser the distribution, the more uniform the electric field generated. Under this condition, the “pinch-off effect” caused by the non-uniform electric field is reduced, which is more conducive to enhancing boiling heat transfer performance. Ultimately, at <i>H</i> = 5.0 mm and <i>E</i> = 1.40 × 10<sup>6</sup> V/m, the CHF with grid electrodes improved by 101.1% compared with the horizontally upward without the electric field, which is a superior combination of working conditions and suggests that a more optimistic boiling heat transfer performance can be obtained in microgravity. This work provides guidance for enhancing boiling heat transfer in microgravity by an electric field.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Enhancement of Boiling Heat Transfer Performance Under the Condition of the Downward Heating Surface by an Electric Field\",\"authors\":\"Xieyang Zhang,&nbsp;Jiayu Zuo,&nbsp;Qing Li,&nbsp;Bin Liu,&nbsp;Wangfang Du\",\"doi\":\"10.1007/s12217-024-10154-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper experimentally investigated the impact of the electric field strength (<i>E</i>), electrode installation heights (<i>H</i>), and the electrode shape on enhanced pool boiling heat transfer performance under a downward heating surface with an electric field. It is observed that the critical heat flux (CHF) generally increases with increasing electric field strength. For instance, for the mesh electrode, the CHF is increased by 100.0%, 240.0%, 340.0%, and 440.0% at <i>E</i> = 0.35 × 10<sup>6</sup> V/m, 0.70 × 10<sup>6</sup> V/m, 1.05 × 10<sup>6</sup> V/m, and 1.40 × 10<sup>6</sup> V/m, respectively, compared to <i>E</i> = 0 V/m. Furthermore, the electrodes hinder the detachment of vapor bubbles, which becomes more pronounced when the electrode installation height is low. At the same time, the more micro-ribs of the electrodes and the denser the distribution, the more uniform the electric field generated. Under this condition, the “pinch-off effect” caused by the non-uniform electric field is reduced, which is more conducive to enhancing boiling heat transfer performance. Ultimately, at <i>H</i> = 5.0 mm and <i>E</i> = 1.40 × 10<sup>6</sup> V/m, the CHF with grid electrodes improved by 101.1% compared with the horizontally upward without the electric field, which is a superior combination of working conditions and suggests that a more optimistic boiling heat transfer performance can be obtained in microgravity. This work provides guidance for enhancing boiling heat transfer in microgravity by an electric field.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10154-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10154-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文实验研究了电场下加热表面下电场强度(E)、电极安装高度(H)和电极形状对强化池沸腾换热性能的影响。临界热流密度(CHF)一般随电场强度的增大而增大。例如,对于网状电极,在E = 0.35 × 106 V/m, 0.70 × 106 V/m, 1.05 × 106 V/m和1.40 × 106 V/m时,CHF分别比E = 0 V/m增加了100.0%,240.0%,340.0%和440.0%。此外,电极阻碍了汽泡的脱离,当电极安装高度较低时,这一点变得更加明显。同时,电极微肋越多,分布越密,产生的电场越均匀。在此条件下,减少了由不均匀电场引起的“掐断效应”,更有利于提高沸腾换热性能。最终,在H = 5.0 mm, E = 1.40 × 106 V/m时,有栅极的CHF比没有电场的水平向上CHF提高了101.1%,这是一种优越的工况组合,表明在微重力条件下可以获得更乐观的沸腾换热性能。研究结果对微重力条件下电场增强沸腾换热具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Study on the Enhancement of Boiling Heat Transfer Performance Under the Condition of the Downward Heating Surface by an Electric Field

Experimental Study on the Enhancement of Boiling Heat Transfer Performance Under the Condition of the Downward Heating Surface by an Electric Field

This paper experimentally investigated the impact of the electric field strength (E), electrode installation heights (H), and the electrode shape on enhanced pool boiling heat transfer performance under a downward heating surface with an electric field. It is observed that the critical heat flux (CHF) generally increases with increasing electric field strength. For instance, for the mesh electrode, the CHF is increased by 100.0%, 240.0%, 340.0%, and 440.0% at E = 0.35 × 106 V/m, 0.70 × 106 V/m, 1.05 × 106 V/m, and 1.40 × 106 V/m, respectively, compared to E = 0 V/m. Furthermore, the electrodes hinder the detachment of vapor bubbles, which becomes more pronounced when the electrode installation height is low. At the same time, the more micro-ribs of the electrodes and the denser the distribution, the more uniform the electric field generated. Under this condition, the “pinch-off effect” caused by the non-uniform electric field is reduced, which is more conducive to enhancing boiling heat transfer performance. Ultimately, at H = 5.0 mm and E = 1.40 × 106 V/m, the CHF with grid electrodes improved by 101.1% compared with the horizontally upward without the electric field, which is a superior combination of working conditions and suggests that a more optimistic boiling heat transfer performance can be obtained in microgravity. This work provides guidance for enhancing boiling heat transfer in microgravity by an electric field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信