利用深度学习方法解开h形微带天线的谐振频率

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Akram Bediaf, Sami Bedra, Djemai Arar, Mohamed Bedra
{"title":"利用深度学习方法解开h形微带天线的谐振频率","authors":"Akram Bediaf,&nbsp;Sami Bedra,&nbsp;Djemai Arar,&nbsp;Mohamed Bedra","doi":"10.1007/s10825-024-02270-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel physics-informed learning approach that combines principles from physics with deep learning techniques to optimize the simulation process of microstrip antennas. These deep learning-based approaches are preferable because traditional full-wave models used in antenna design are computationally intensive and require significant memory due to their reliance on iterative algorithms, leading to exponential increases in resource demands as input parameters grow. In contrast, the proposed deep learning method requires significant computational resources only during training, with a constant time complexity of O(1) during deployment. This results in much faster modeling, allowing a broader range of antenna configurations to be processed more quickly, thereby improving the efficiency of the design workflow. Unlike conventional deep learning methods that rely solely on data, our approach leverages the underlying physical laws governing antenna behavior, particularly beneficial when labeled data is scarce or difficult to obtain. We propose a bias observational physics-informed learning technique by integrating physical laws into the loss function, which includes two components: Neuron Loss, the standard MSE measuring prediction accuracy against actual data, and Physics Loss, which penalizes deviations from physical laws as represented by a cavity model. The total loss combines these two, with higher physics loss indicating poorer alignment with physical principles and lower physics loss suggesting better adherence to them. This approach refines predictions by balancing data fidelity with physical constraint, wherein the dataset is sourced from simulations and real-world measurements. This strategy ensures model uncertainty and broad generalization capabilities. Computational efficiency is a key consideration, with our approach implemented on low-specification hardware, emphasizing optimal resource and power consumption. The H-shaped microstrip antennas (HMAs), known for its wide and dual-band properties, serves as the target antenna for our study. We employ three sequential models’ recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)—integrated with a cavity model-driven resonance frequency representation to maintain the resonance mode TM<sup>10</sup> at prediction. Comparative analysis of these models encompasses execution time, prediction convergence, loss reduction, prediction score (<i>R</i><sup>2</sup>), as well as memory and CPU usage. This research contributes four main sections elucidating the methodology, experimental setup, and results analysis, underscoring the efficacy of our deep learning approach in antenna optimization.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the resonant frequency of H-shaped microstrip antennas using a deep learning approach\",\"authors\":\"Akram Bediaf,&nbsp;Sami Bedra,&nbsp;Djemai Arar,&nbsp;Mohamed Bedra\",\"doi\":\"10.1007/s10825-024-02270-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a novel physics-informed learning approach that combines principles from physics with deep learning techniques to optimize the simulation process of microstrip antennas. These deep learning-based approaches are preferable because traditional full-wave models used in antenna design are computationally intensive and require significant memory due to their reliance on iterative algorithms, leading to exponential increases in resource demands as input parameters grow. In contrast, the proposed deep learning method requires significant computational resources only during training, with a constant time complexity of O(1) during deployment. This results in much faster modeling, allowing a broader range of antenna configurations to be processed more quickly, thereby improving the efficiency of the design workflow. Unlike conventional deep learning methods that rely solely on data, our approach leverages the underlying physical laws governing antenna behavior, particularly beneficial when labeled data is scarce or difficult to obtain. We propose a bias observational physics-informed learning technique by integrating physical laws into the loss function, which includes two components: Neuron Loss, the standard MSE measuring prediction accuracy against actual data, and Physics Loss, which penalizes deviations from physical laws as represented by a cavity model. The total loss combines these two, with higher physics loss indicating poorer alignment with physical principles and lower physics loss suggesting better adherence to them. This approach refines predictions by balancing data fidelity with physical constraint, wherein the dataset is sourced from simulations and real-world measurements. This strategy ensures model uncertainty and broad generalization capabilities. Computational efficiency is a key consideration, with our approach implemented on low-specification hardware, emphasizing optimal resource and power consumption. The H-shaped microstrip antennas (HMAs), known for its wide and dual-band properties, serves as the target antenna for our study. We employ three sequential models’ recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)—integrated with a cavity model-driven resonance frequency representation to maintain the resonance mode TM<sup>10</sup> at prediction. Comparative analysis of these models encompasses execution time, prediction convergence, loss reduction, prediction score (<i>R</i><sup>2</sup>), as well as memory and CPU usage. This research contributes four main sections elucidating the methodology, experimental setup, and results analysis, underscoring the efficacy of our deep learning approach in antenna optimization.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02270-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02270-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的基于物理的学习方法,该方法将物理学原理与深度学习技术相结合,以优化微带天线的仿真过程。这些基于深度学习的方法更可取,因为天线设计中使用的传统全波模型计算密集,并且由于依赖迭代算法而需要大量内存,导致资源需求随着输入参数的增长呈指数增长。相比之下,本文提出的深度学习方法仅在训练期间需要大量的计算资源,部署期间的时间复杂度为O(1)。这导致更快的建模,允许更广泛的天线配置更快地处理,从而提高设计工作流程的效率。与仅依赖数据的传统深度学习方法不同,我们的方法利用了控制天线行为的潜在物理定律,在标记数据稀缺或难以获得时尤其有益。我们提出了一种偏差观测物理信息学习技术,通过将物理定律集成到损失函数中,该函数包括两个部分:神经元损失(Neuron loss)和物理损失(Physics loss),前者是衡量实际数据预测精度的标准MSE,后者是对由空腔模型表示的偏离物理定律的惩罚。总损耗结合了这两者,较高的物理损耗表明较不符合物理原则,较低的物理损耗表明较遵守物理原则。这种方法通过平衡数据保真度和物理约束来改进预测,其中数据集来自模拟和现实世界的测量。该策略确保了模型的不确定性和广泛的泛化能力。计算效率是一个关键的考虑因素,我们的方法在低规格硬件上实现,强调最优的资源和功耗。h型微带天线(HMAs)以其宽双频特性而闻名,是我们研究的目标天线。我们采用三种序列模型:递归神经网络(RNN)、长短期记忆(LSTM)和门控递归单元(GRU),并结合腔模型驱动的共振频率表示来维持预测时的共振模式TM10。这些模型的比较分析包括执行时间、预测收敛、减少损失、预测分数(R2)以及内存和CPU使用情况。本研究分为四个主要部分,阐述了方法、实验设置和结果分析,强调了我们的深度学习方法在天线优化中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the resonant frequency of H-shaped microstrip antennas using a deep learning approach

This paper introduces a novel physics-informed learning approach that combines principles from physics with deep learning techniques to optimize the simulation process of microstrip antennas. These deep learning-based approaches are preferable because traditional full-wave models used in antenna design are computationally intensive and require significant memory due to their reliance on iterative algorithms, leading to exponential increases in resource demands as input parameters grow. In contrast, the proposed deep learning method requires significant computational resources only during training, with a constant time complexity of O(1) during deployment. This results in much faster modeling, allowing a broader range of antenna configurations to be processed more quickly, thereby improving the efficiency of the design workflow. Unlike conventional deep learning methods that rely solely on data, our approach leverages the underlying physical laws governing antenna behavior, particularly beneficial when labeled data is scarce or difficult to obtain. We propose a bias observational physics-informed learning technique by integrating physical laws into the loss function, which includes two components: Neuron Loss, the standard MSE measuring prediction accuracy against actual data, and Physics Loss, which penalizes deviations from physical laws as represented by a cavity model. The total loss combines these two, with higher physics loss indicating poorer alignment with physical principles and lower physics loss suggesting better adherence to them. This approach refines predictions by balancing data fidelity with physical constraint, wherein the dataset is sourced from simulations and real-world measurements. This strategy ensures model uncertainty and broad generalization capabilities. Computational efficiency is a key consideration, with our approach implemented on low-specification hardware, emphasizing optimal resource and power consumption. The H-shaped microstrip antennas (HMAs), known for its wide and dual-band properties, serves as the target antenna for our study. We employ three sequential models’ recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)—integrated with a cavity model-driven resonance frequency representation to maintain the resonance mode TM10 at prediction. Comparative analysis of these models encompasses execution time, prediction convergence, loss reduction, prediction score (R2), as well as memory and CPU usage. This research contributes four main sections elucidating the methodology, experimental setup, and results analysis, underscoring the efficacy of our deep learning approach in antenna optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信