Nick J. Hol, Leo Pel, Martijn Kurvers, Claire Chassagne
{"title":"采用多片步进电机方法的粘土沉降快速一维核磁共振成像","authors":"Nick J. Hol, Leo Pel, Martijn Kurvers, Claire Chassagne","doi":"10.1007/s00348-024-03937-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a fast 1D nuclear magnetic resonance (NMR) imaging method based on multi-slice imaging with a stepper motor to study sedimentation dynamics of clayey soils. Traditional NMR is limited by long acquisition times due to water’s <i>T</i><sub>1</sub> relaxation time. Our approach combines multi-slice imaging with a stepper motor and frequency-based selection, reducing measurement time while maintaining sub-millimeter resolution, at the same time overcoming the limitations by the slow relaxation of water. This nondestructive method provides detailed insights into the sedimentation and consolidation of suspensions, including pore size distribution and density profiles within a single measurement. The technique is demonstrated with kaolinite clay suspensions, highlighting the technique’s ability to capture the dynamics of gravity-driven systems rapidly and accurately, even for fast-sedimenting soils such as kaolinite in the first hours of sedimentation. This advancement is valuable for geotechnical and environmental applications where understanding sedimentation is crucial.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast 1D NMR imaging of clay sedimentation using a multi-slice stepper motor method\",\"authors\":\"Nick J. Hol, Leo Pel, Martijn Kurvers, Claire Chassagne\",\"doi\":\"10.1007/s00348-024-03937-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a fast 1D nuclear magnetic resonance (NMR) imaging method based on multi-slice imaging with a stepper motor to study sedimentation dynamics of clayey soils. Traditional NMR is limited by long acquisition times due to water’s <i>T</i><sub>1</sub> relaxation time. Our approach combines multi-slice imaging with a stepper motor and frequency-based selection, reducing measurement time while maintaining sub-millimeter resolution, at the same time overcoming the limitations by the slow relaxation of water. This nondestructive method provides detailed insights into the sedimentation and consolidation of suspensions, including pore size distribution and density profiles within a single measurement. The technique is demonstrated with kaolinite clay suspensions, highlighting the technique’s ability to capture the dynamics of gravity-driven systems rapidly and accurately, even for fast-sedimenting soils such as kaolinite in the first hours of sedimentation. This advancement is valuable for geotechnical and environmental applications where understanding sedimentation is crucial.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-024-03937-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03937-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Fast 1D NMR imaging of clay sedimentation using a multi-slice stepper motor method
This study introduces a fast 1D nuclear magnetic resonance (NMR) imaging method based on multi-slice imaging with a stepper motor to study sedimentation dynamics of clayey soils. Traditional NMR is limited by long acquisition times due to water’s T1 relaxation time. Our approach combines multi-slice imaging with a stepper motor and frequency-based selection, reducing measurement time while maintaining sub-millimeter resolution, at the same time overcoming the limitations by the slow relaxation of water. This nondestructive method provides detailed insights into the sedimentation and consolidation of suspensions, including pore size distribution and density profiles within a single measurement. The technique is demonstrated with kaolinite clay suspensions, highlighting the technique’s ability to capture the dynamics of gravity-driven systems rapidly and accurately, even for fast-sedimenting soils such as kaolinite in the first hours of sedimentation. This advancement is valuable for geotechnical and environmental applications where understanding sedimentation is crucial.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.