基于信任理论语义信息编码的显著图场景推理

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Preeti Meena;Himanshu Kumar;Sandeep Yadav
{"title":"基于信任理论语义信息编码的显著图场景推理","authors":"Preeti Meena;Himanshu Kumar;Sandeep Yadav","doi":"10.1109/LSP.2024.3508538","DOIUrl":null,"url":null,"abstract":"Scene inference refers to the identification of the scene from a given set of scene representations such as images. A saliency graph of a scene contains scene-defining objects along with semantic information between them in the graph representation. Existing methods consider the entire scene with uniform weighting to all semantic information for scene inference, resulting in a suboptimal performance. This letter presents an optimal edge weight estimation using the trust theoretic framework to encode semantic information effectively in saliency graphs. We have utilized the notion of converged global absolute trust in saliency scores of salient objects to compute the weighting of semantic information. Experimental results highlight the efficacy of the proposed method.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"256-260"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene Inference Using Saliency Graphs With Trust-Theoretic Semantic Information Encoding\",\"authors\":\"Preeti Meena;Himanshu Kumar;Sandeep Yadav\",\"doi\":\"10.1109/LSP.2024.3508538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene inference refers to the identification of the scene from a given set of scene representations such as images. A saliency graph of a scene contains scene-defining objects along with semantic information between them in the graph representation. Existing methods consider the entire scene with uniform weighting to all semantic information for scene inference, resulting in a suboptimal performance. This letter presents an optimal edge weight estimation using the trust theoretic framework to encode semantic information effectively in saliency graphs. We have utilized the notion of converged global absolute trust in saliency scores of salient objects to compute the weighting of semantic information. Experimental results highlight the efficacy of the proposed method.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"256-260\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770563/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10770563/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

场景推理是指从一组给定的场景表示(如图像)中识别场景。场景的显著性图包含场景定义对象,以及在图表示中它们之间的语义信息。现有方法考虑整个场景,对所有语义信息进行统一加权进行场景推理,导致性能不理想。本文提出了一种利用信任理论框架对显著图的语义信息进行有效编码的最优边权估计方法。我们利用显著性对象的显著性分数的收敛全局绝对信任的概念来计算语义信息的权重。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scene Inference Using Saliency Graphs With Trust-Theoretic Semantic Information Encoding
Scene inference refers to the identification of the scene from a given set of scene representations such as images. A saliency graph of a scene contains scene-defining objects along with semantic information between them in the graph representation. Existing methods consider the entire scene with uniform weighting to all semantic information for scene inference, resulting in a suboptimal performance. This letter presents an optimal edge weight estimation using the trust theoretic framework to encode semantic information effectively in saliency graphs. We have utilized the notion of converged global absolute trust in saliency scores of salient objects to compute the weighting of semantic information. Experimental results highlight the efficacy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信