稀疏图信号恢复的理论保证

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Gal Morgenstern;Tirza Routtenberg
{"title":"稀疏图信号恢复的理论保证","authors":"Gal Morgenstern;Tirza Routtenberg","doi":"10.1109/LSP.2024.3514800","DOIUrl":null,"url":null,"abstract":"Sparse graph signals have recently been utilized in graph signal processing (GSP) for tasks such as graph signal reconstruction, blind deconvolution, and sampling. In addition, sparse graph signals can be used to model real-world network applications across various domains, such as social, biological, and power systems. Despite the extensive use of sparse graph signals, limited attention has been paid to the derivation of theoretical guarantees on their recovery. In this paper, we present a novel theoretical analysis of the problem of recovering a node-domain sparse graph signal from the output of a first-order graph filter. The graph filter we study is the Laplacian matrix, and we derive upper and lower bounds on its mutual coherence. Our results establish a connection between the recovery performance and the minimal graph nodal degree. The proposed bounds are evaluated via simulations on the Erdős-Rényi graph.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"266-270"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Guarantees for Sparse Graph Signal Recovery\",\"authors\":\"Gal Morgenstern;Tirza Routtenberg\",\"doi\":\"10.1109/LSP.2024.3514800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse graph signals have recently been utilized in graph signal processing (GSP) for tasks such as graph signal reconstruction, blind deconvolution, and sampling. In addition, sparse graph signals can be used to model real-world network applications across various domains, such as social, biological, and power systems. Despite the extensive use of sparse graph signals, limited attention has been paid to the derivation of theoretical guarantees on their recovery. In this paper, we present a novel theoretical analysis of the problem of recovering a node-domain sparse graph signal from the output of a first-order graph filter. The graph filter we study is the Laplacian matrix, and we derive upper and lower bounds on its mutual coherence. Our results establish a connection between the recovery performance and the minimal graph nodal degree. The proposed bounds are evaluated via simulations on the Erdős-Rényi graph.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"266-270\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10787248/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10787248/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

稀疏图信号最近被用于图信号处理(GSP)的任务,如图信号重建、盲反卷积和采样。此外,稀疏图信号可用于对各种领域(如社会、生物和电力系统)的实际网络应用程序进行建模。尽管稀疏图信号得到了广泛的应用,但对其恢复的理论保证的推导却关注有限。本文对从一阶图滤波器的输出中恢复节点域稀疏图信号的问题提出了一种新的理论分析。我们研究的图滤波器是拉普拉斯矩阵,并给出了其互相干性的上界和下界。我们的结果建立了恢复性能与最小图节点度之间的联系。通过在Erdős-Rényi图上的模拟来评估所提出的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Guarantees for Sparse Graph Signal Recovery
Sparse graph signals have recently been utilized in graph signal processing (GSP) for tasks such as graph signal reconstruction, blind deconvolution, and sampling. In addition, sparse graph signals can be used to model real-world network applications across various domains, such as social, biological, and power systems. Despite the extensive use of sparse graph signals, limited attention has been paid to the derivation of theoretical guarantees on their recovery. In this paper, we present a novel theoretical analysis of the problem of recovering a node-domain sparse graph signal from the output of a first-order graph filter. The graph filter we study is the Laplacian matrix, and we derive upper and lower bounds on its mutual coherence. Our results establish a connection between the recovery performance and the minimal graph nodal degree. The proposed bounds are evaluated via simulations on the Erdős-Rényi graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信