Bowei Xun, Jian Wang, Yukio Sato, George Hasegawa, Hirofumi Akamatsu and Katsuro Hayashi
{"title":"高导电性,低温烧结兼容的NASICON固体电解质,用于增强全固态电池中硬碳电极的复合","authors":"Bowei Xun, Jian Wang, Yukio Sato, George Hasegawa, Hirofumi Akamatsu and Katsuro Hayashi","doi":"10.1039/D4TA07954J","DOIUrl":null,"url":null,"abstract":"<p >Oxide-based all-solid-state sodium-ion batteries present a safer, more robust and more sustainable alternative to lithium-ion batteries, though fabrication challenges persist, particularly during co-sintering. In this study, we demonstrate that by adding sodium borate-based sintering aids to highly conductive Na<small><sub>3</sub></small>Zr<small><sub>2</sub></small>(SiO<small><sub>4</sub></small>)<small><sub>2</sub></small>(PO<small><sub>4</sub></small>) (NZSP)-based materials, both a lower sintering temperature and high ionic conductivity can be achieved. Specifically, the mixture of Na<small><sub>2</sub></small>CO<small><sub>3</sub></small> and B<small><sub>2</sub></small>O<small><sub>3</sub></small> as a sintering aid is crucial, and samples sintered at 900 °C with a Na<small><sub>3.4</sub></small>Zr<small><sub>1.95</sub></small>Al<small><sub>0.05</sub></small>(SiO<small><sub>4</sub></small>)<small><sub>2.35</sub></small>(PO<small><sub>4</sub></small>)<small><sub>0.65</sub></small> composition exhibits a Na<small><sup>+</sup></small> ion conductivity exceeding 4 × 10<small><sup>−3</sup></small> S cm<small><sup>−1</sup></small> at room temperature. These materials are also compatible with co-sintering alongside hard carbon anode materials. The all-solid-state cell, featuring a composite electrode of spherical hard carbon particles and optimized NZSP-based electrolytes, demonstrated stable charge–discharge performance at room temperature, retaining a capacity of 140–220 mA h g<small><sup>−1</sup></small> across 80 cycles.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 3","pages":" 1766-1771"},"PeriodicalIF":9.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta07954j?page=search","citationCount":"0","resultStr":"{\"title\":\"High-conductivity, low-temperature sintering-compatible NASICON solid electrolyte for enhanced compositing with hard carbon electrode in all-solid-state batteries†\",\"authors\":\"Bowei Xun, Jian Wang, Yukio Sato, George Hasegawa, Hirofumi Akamatsu and Katsuro Hayashi\",\"doi\":\"10.1039/D4TA07954J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oxide-based all-solid-state sodium-ion batteries present a safer, more robust and more sustainable alternative to lithium-ion batteries, though fabrication challenges persist, particularly during co-sintering. In this study, we demonstrate that by adding sodium borate-based sintering aids to highly conductive Na<small><sub>3</sub></small>Zr<small><sub>2</sub></small>(SiO<small><sub>4</sub></small>)<small><sub>2</sub></small>(PO<small><sub>4</sub></small>) (NZSP)-based materials, both a lower sintering temperature and high ionic conductivity can be achieved. Specifically, the mixture of Na<small><sub>2</sub></small>CO<small><sub>3</sub></small> and B<small><sub>2</sub></small>O<small><sub>3</sub></small> as a sintering aid is crucial, and samples sintered at 900 °C with a Na<small><sub>3.4</sub></small>Zr<small><sub>1.95</sub></small>Al<small><sub>0.05</sub></small>(SiO<small><sub>4</sub></small>)<small><sub>2.35</sub></small>(PO<small><sub>4</sub></small>)<small><sub>0.65</sub></small> composition exhibits a Na<small><sup>+</sup></small> ion conductivity exceeding 4 × 10<small><sup>−3</sup></small> S cm<small><sup>−1</sup></small> at room temperature. These materials are also compatible with co-sintering alongside hard carbon anode materials. The all-solid-state cell, featuring a composite electrode of spherical hard carbon particles and optimized NZSP-based electrolytes, demonstrated stable charge–discharge performance at room temperature, retaining a capacity of 140–220 mA h g<small><sup>−1</sup></small> across 80 cycles.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 3\",\"pages\":\" 1766-1771\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta07954j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07954j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07954j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
氧化物基全固态钠离子电池是锂离子电池的一种更安全、更坚固、更可持续的替代品,但制造方面的挑战仍然存在,特别是在共烧结过程中。在本研究中,我们证明了在高导电性的Na3Zr2(SiO4)2(PO4) (NZSP)基材料中加入硼酸钠基烧结助剂,可以实现较低的烧结温度和较高的离子导电性。具体来说,Na2CO3和B2O3的混合物作为助烧剂是至关重要的,在900°C下以Na3.4Zr1.95Al0.05(SiO4)2.35(PO4)0.65成分烧结的样品在室温下的Na+离子电导率超过4 × 10−3 S cm−1。这些材料也可以与硬碳阳极材料一起共烧结。全固态电池采用球形硬碳颗粒复合电极和优化的nzsp基电解质,在室温下表现出稳定的充放电性能,在80次循环中保持140-220 mA h g - 1的容量。
High-conductivity, low-temperature sintering-compatible NASICON solid electrolyte for enhanced compositing with hard carbon electrode in all-solid-state batteries†
Oxide-based all-solid-state sodium-ion batteries present a safer, more robust and more sustainable alternative to lithium-ion batteries, though fabrication challenges persist, particularly during co-sintering. In this study, we demonstrate that by adding sodium borate-based sintering aids to highly conductive Na3Zr2(SiO4)2(PO4) (NZSP)-based materials, both a lower sintering temperature and high ionic conductivity can be achieved. Specifically, the mixture of Na2CO3 and B2O3 as a sintering aid is crucial, and samples sintered at 900 °C with a Na3.4Zr1.95Al0.05(SiO4)2.35(PO4)0.65 composition exhibits a Na+ ion conductivity exceeding 4 × 10−3 S cm−1 at room temperature. These materials are also compatible with co-sintering alongside hard carbon anode materials. The all-solid-state cell, featuring a composite electrode of spherical hard carbon particles and optimized NZSP-based electrolytes, demonstrated stable charge–discharge performance at room temperature, retaining a capacity of 140–220 mA h g−1 across 80 cycles.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.