人机界面手写输入的电子皮肤

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Huacui Xiang, Zhijian Li, Zhou Bai, Haiwei Wu, Guodong Liu, Hongwei Zhou, Hanbin Liu
{"title":"人机界面手写输入的电子皮肤","authors":"Huacui Xiang, Zhijian Li, Zhou Bai, Haiwei Wu, Guodong Liu, Hongwei Zhou, Hanbin Liu","doi":"10.1016/j.cej.2024.158879","DOIUrl":null,"url":null,"abstract":"Wearable human–machine interaction remains a huge challenge when various flexible electronics have been developed to date, for which the information input seems more difficult than the information output such as display devices. Here in this work, an e-skin for handwriting input was disclosed based on a double network hydrogel of gluten protein and polyvinyl alcohol (PVA) that is cross-linked by borax. The hydrogel can tightly adhere onto human skin, being stretchable, self-healable, and working properly even under breakage, which perfectly match the requirements of the e-skin for human–machine interaction. Under the assistant of deep learning, the handwriting of letter and words on it can be recognized with high accuracy of above 89%, even under tensile state or destruction. In addition, this flexible device is biocompatible and biodegradable benefiting from the protein and PVA networks, which make it suitable as a wearable e-skin and being free of electronic wastes. The finding of this work may open a window for the development of e-skin for the two-way human–machine interaction.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"39 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An E-skin for handwriting input at human-machine interface\",\"authors\":\"Huacui Xiang, Zhijian Li, Zhou Bai, Haiwei Wu, Guodong Liu, Hongwei Zhou, Hanbin Liu\",\"doi\":\"10.1016/j.cej.2024.158879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable human–machine interaction remains a huge challenge when various flexible electronics have been developed to date, for which the information input seems more difficult than the information output such as display devices. Here in this work, an e-skin for handwriting input was disclosed based on a double network hydrogel of gluten protein and polyvinyl alcohol (PVA) that is cross-linked by borax. The hydrogel can tightly adhere onto human skin, being stretchable, self-healable, and working properly even under breakage, which perfectly match the requirements of the e-skin for human–machine interaction. Under the assistant of deep learning, the handwriting of letter and words on it can be recognized with high accuracy of above 89%, even under tensile state or destruction. In addition, this flexible device is biocompatible and biodegradable benefiting from the protein and PVA networks, which make it suitable as a wearable e-skin and being free of electronic wastes. The finding of this work may open a window for the development of e-skin for the two-way human–machine interaction.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.158879\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158879","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在各种柔性电子产品发展到今天的情况下,可穿戴人机交互仍然是一个巨大的挑战,其中信息输入似乎比显示设备等信息输出更困难。在这项工作中,基于面筋蛋白和聚乙烯醇(PVA)的双网络水凝胶(由硼砂交联),公开了用于手写输入的电子皮肤。水凝胶能紧密粘附在人体皮肤上,具有可拉伸性、自愈性,即使破损也能正常工作,完全符合电子皮肤对人机交互的要求。在深度学习的辅助下,即使在拉伸状态或破坏状态下,其上的字母和单词的笔迹也能以89%以上的准确率进行识别。此外,得益于蛋白质和PVA网络,这种灵活的设备具有生物相容性和可生物降解性,这使得它适合作为可穿戴的电子皮肤,并且没有电子废物。这项工作的发现可能为双向人机交互电子皮肤的发展打开一扇窗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An E-skin for handwriting input at human-machine interface

An E-skin for handwriting input at human-machine interface
Wearable human–machine interaction remains a huge challenge when various flexible electronics have been developed to date, for which the information input seems more difficult than the information output such as display devices. Here in this work, an e-skin for handwriting input was disclosed based on a double network hydrogel of gluten protein and polyvinyl alcohol (PVA) that is cross-linked by borax. The hydrogel can tightly adhere onto human skin, being stretchable, self-healable, and working properly even under breakage, which perfectly match the requirements of the e-skin for human–machine interaction. Under the assistant of deep learning, the handwriting of letter and words on it can be recognized with high accuracy of above 89%, even under tensile state or destruction. In addition, this flexible device is biocompatible and biodegradable benefiting from the protein and PVA networks, which make it suitable as a wearable e-skin and being free of electronic wastes. The finding of this work may open a window for the development of e-skin for the two-way human–machine interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信