Xinchun Ye, Dezhi Chen, Quanzhi Zhang, Tianlin Zhou, Jian-Ping Zou, Shenglian Luo
{"title":"尖晶石-碳内置电场增强和协同催化活化:一种生成1o2的新途径","authors":"Xinchun Ye, Dezhi Chen, Quanzhi Zhang, Tianlin Zhou, Jian-Ping Zou, Shenglian Luo","doi":"10.1016/j.cej.2024.158906","DOIUrl":null,"url":null,"abstract":"The removal of emerging micropollutants in complex water matrices usually requires excessive oxidants and/or energy input, resulting in low cost-effectiveness and potentially causing secondary pollution. Therefore, achieving selective oxidation of target micropollutants for water purification is meaningful but challenging. Herein, a built-in electric field (BIEF) from MnFe<sub>2</sub>O<sub>4</sub> nanosheet arrays to carbon cloth (CC) substance is constructed, in which the electrons transfer from Mn and Fe atoms to neighboring C atoms, resulting in a positive shift of the d band of Mn and Fe sites and the increase of electron density at Fermi level. With the influence of the BIEF, the activation of peroxymonosulfate (PMS) by MnFe<sub>2</sub>O<sub>4</sub> is nearly 100 % redirected towards nonradical pathways. Furthermore, DFT calculations reveal a significant enhancement in PMS adsorption, which leads to a decrease in the energy barrier required for the direct generation of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mspace width=\"0.166667em\" is=\"true\" /></mrow><mn is=\"true\">1</mn></msup><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">2</mn></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 1853 1146.6\" width=\"4.304ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"></g></g><g is=\"true\" transform=\"translate(166,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(620,0)\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(1399,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mspace is=\"true\" width=\"0.166667em\"></mspace></mrow><mn is=\"true\">1</mn></msup><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mn is=\"true\">2</mn></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mspace width=\"0.166667em\" is=\"true\"></mspace></mrow><mn is=\"true\">1</mn></msup><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">2</mn></msub></math></script></span> from PMS*, opening a new pathway from PMS*<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo stretchy=\"false\" is=\"true\">&#x2192;</mo><msub is=\"true\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mspace width=\"0.166667em\" is=\"true\" /></mrow><mn is=\"true\">1</mn></msup><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">2</mn></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 3131.3 1146.6\" width=\"7.273ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2192\"></use></g><g is=\"true\" transform=\"translate(1278,0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"></g></g><g is=\"true\" transform=\"translate(166,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(620,0)\"><use xlink:href=\"#MJMAIN-4F\"></use></g></g><g is=\"true\" transform=\"translate(1399,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\" stretchy=\"false\">→</mo><msub is=\"true\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mspace is=\"true\" width=\"0.166667em\"></mspace></mrow><mn is=\"true\">1</mn></msup><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mn is=\"true\">2</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo stretchy=\"false\" is=\"true\">→</mo><msub is=\"true\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mspace width=\"0.166667em\" is=\"true\"></mspace></mrow><mn is=\"true\">1</mn></msup><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mn is=\"true\">2</mn></msub></mrow></math></script></span>. The fabricated Fenton-like oxidation system delivers selective oxidation towards electron-rich organic micropollutants. This study deepens the understanding of the driving force behind the activation of PMS by BIEF and provides new insights into the design of innovative spinel-carbon catalysts.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"39 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced and synergistic catalytic activation through spinel-carbon built-in electric field: A novel pathway for generating1O2\",\"authors\":\"Xinchun Ye, Dezhi Chen, Quanzhi Zhang, Tianlin Zhou, Jian-Ping Zou, Shenglian Luo\",\"doi\":\"10.1016/j.cej.2024.158906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The removal of emerging micropollutants in complex water matrices usually requires excessive oxidants and/or energy input, resulting in low cost-effectiveness and potentially causing secondary pollution. Therefore, achieving selective oxidation of target micropollutants for water purification is meaningful but challenging. Herein, a built-in electric field (BIEF) from MnFe<sub>2</sub>O<sub>4</sub> nanosheet arrays to carbon cloth (CC) substance is constructed, in which the electrons transfer from Mn and Fe atoms to neighboring C atoms, resulting in a positive shift of the d band of Mn and Fe sites and the increase of electron density at Fermi level. With the influence of the BIEF, the activation of peroxymonosulfate (PMS) by MnFe<sub>2</sub>O<sub>4</sub> is nearly 100 % redirected towards nonradical pathways. Furthermore, DFT calculations reveal a significant enhancement in PMS adsorption, which leads to a decrease in the energy barrier required for the direct generation of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mspace width=\\\"0.166667em\\\" is=\\\"true\\\" /></mrow><mn is=\\\"true\\\">1</mn></msup><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mn is=\\\"true\\\">2</mn></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -896.2 1853 1146.6\\\" width=\\\"4.304ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"></g></g><g is=\\\"true\\\" transform=\\\"translate(166,362)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-31\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(620,0)\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1399,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mspace is=\\\"true\\\" width=\\\"0.166667em\\\"></mspace></mrow><mn is=\\\"true\\\">1</mn></msup><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mn is=\\\"true\\\">2</mn></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mspace width=\\\"0.166667em\\\" is=\\\"true\\\"></mspace></mrow><mn is=\\\"true\\\">1</mn></msup><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mn is=\\\"true\\\">2</mn></msub></math></script></span> from PMS*, opening a new pathway from PMS*<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo stretchy=\\\"false\\\" is=\\\"true\\\">&#x2192;</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mspace width=\\\"0.166667em\\\" is=\\\"true\\\" /></mrow><mn is=\\\"true\\\">1</mn></msup><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mn is=\\\"true\\\">2</mn></msub></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.663ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -896.2 3131.3 1146.6\\\" width=\\\"7.273ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2192\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1278,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"></g></g><g is=\\\"true\\\" transform=\\\"translate(166,362)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-31\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(620,0)\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(1399,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mo is=\\\"true\\\" stretchy=\\\"false\\\">→</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mspace is=\\\"true\\\" width=\\\"0.166667em\\\"></mspace></mrow><mn is=\\\"true\\\">1</mn></msup><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi></mrow><mn is=\\\"true\\\">2</mn></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo stretchy=\\\"false\\\" is=\\\"true\\\">→</mo><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mspace width=\\\"0.166667em\\\" is=\\\"true\\\"></mspace></mrow><mn is=\\\"true\\\">1</mn></msup><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi></mrow><mn is=\\\"true\\\">2</mn></msub></mrow></math></script></span>. The fabricated Fenton-like oxidation system delivers selective oxidation towards electron-rich organic micropollutants. This study deepens the understanding of the driving force behind the activation of PMS by BIEF and provides new insights into the design of innovative spinel-carbon catalysts.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.158906\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158906","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhanced and synergistic catalytic activation through spinel-carbon built-in electric field: A novel pathway for generating1O2
The removal of emerging micropollutants in complex water matrices usually requires excessive oxidants and/or energy input, resulting in low cost-effectiveness and potentially causing secondary pollution. Therefore, achieving selective oxidation of target micropollutants for water purification is meaningful but challenging. Herein, a built-in electric field (BIEF) from MnFe2O4 nanosheet arrays to carbon cloth (CC) substance is constructed, in which the electrons transfer from Mn and Fe atoms to neighboring C atoms, resulting in a positive shift of the d band of Mn and Fe sites and the increase of electron density at Fermi level. With the influence of the BIEF, the activation of peroxymonosulfate (PMS) by MnFe2O4 is nearly 100 % redirected towards nonradical pathways. Furthermore, DFT calculations reveal a significant enhancement in PMS adsorption, which leads to a decrease in the energy barrier required for the direct generation of from PMS*, opening a new pathway from PMS*. The fabricated Fenton-like oxidation system delivers selective oxidation towards electron-rich organic micropollutants. This study deepens the understanding of the driving force behind the activation of PMS by BIEF and provides new insights into the design of innovative spinel-carbon catalysts.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.