利用多孔碳基电催化剂的孔结构调控制备高能量密度锂硫电池

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-23 DOI:10.1002/smll.202410907
Pengpeng Zhang, Chen Wang, Jingbo Zhang, Ruohan Hou, Shijie Zhang, Kangli Liu, S. Ravi P. Silva, Peng Zhang, Guosheng Shao
{"title":"利用多孔碳基电催化剂的孔结构调控制备高能量密度锂硫电池","authors":"Pengpeng Zhang, Chen Wang, Jingbo Zhang, Ruohan Hou, Shijie Zhang, Kangli Liu, S. Ravi P. Silva, Peng Zhang, Guosheng Shao","doi":"10.1002/smll.202410907","DOIUrl":null,"url":null,"abstract":"The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid‐state products, reduce the Li<jats:sub>2</jats:sub>S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium‐sulfur (Li‐S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet‐based electrocatalysts is precisely controlled by adjusting the content of a water‐soluble potassium chloride template, allowing for in‐depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li‐S batteries. The molybdenum carbide‐embedded carbon nanosheet (MoC‐CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC‐CNS‐3‐based Li‐S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm<jats:sup>−2</jats:sup>) and a low electrolyte‐to‐sulfur (E/S) ratio of 4 uL mg<jats:sup>−1</jats:sup>, delivering a high gravimetric energy density of 354.5 Wh kg<jats:sup>−1</jats:sup>. This work provides a viable strategy for developing high‐performance Li‐S batteries.","PeriodicalId":228,"journal":{"name":"Small","volume":"8 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing High Energy Density Li‐S Batteries via Pore‐Structure Regulation of Porous Carbon Based Electrocatalyst\",\"authors\":\"Pengpeng Zhang, Chen Wang, Jingbo Zhang, Ruohan Hou, Shijie Zhang, Kangli Liu, S. Ravi P. Silva, Peng Zhang, Guosheng Shao\",\"doi\":\"10.1002/smll.202410907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid‐state products, reduce the Li<jats:sub>2</jats:sub>S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium‐sulfur (Li‐S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet‐based electrocatalysts is precisely controlled by adjusting the content of a water‐soluble potassium chloride template, allowing for in‐depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li‐S batteries. The molybdenum carbide‐embedded carbon nanosheet (MoC‐CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC‐CNS‐3‐based Li‐S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm<jats:sup>−2</jats:sup>) and a low electrolyte‐to‐sulfur (E/S) ratio of 4 uL mg<jats:sup>−1</jats:sup>, delivering a high gravimetric energy density of 354.5 Wh kg<jats:sup>−1</jats:sup>. This work provides a viable strategy for developing high‐performance Li‐S batteries.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202410907\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410907","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多孔碳材料中的介孔和大孔有助于增加固态产物的沉积表面积,减少Li2S膜厚度,增强电子和质量的传递,加速反应动力学。然而,过量的介孔和大孔会导致电解质消耗增加,特别是在高硫负载下,过量的电解质使用阻碍了锂硫电池实际能量密度的提高。合理的孔隙结构可以最大限度地减少填充孔隙的电解质量,从而减少电解质消耗,同时实现快速反应动力学和高重量能量密度。在这项工作中,通过调整水溶性氯化钾模板的含量来精确控制碳纳米片基电催化剂的孔隙结构,从而深入研究Li - S电池中孔隙结构、电解质使用和电化学性能之间的关系。碳化钼嵌入碳纳米片(MoC - CNS)电催化剂具有优化的孔隙结构,在高硫负载和低电解质条件下具有优异的电化学性能。最终,MoC - CNS - 3基Li - S电池在高硫负载(12 mg cm - 2)和低电解质-硫(E/S)比(4 uL mg - 1)下实现了超过50个循环的稳定运行,提供了354.5 Wh kg - 1的高重量能量密度。这项工作为开发高性能锂硫电池提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Developing High Energy Density Li‐S Batteries via Pore‐Structure Regulation of Porous Carbon Based Electrocatalyst

Developing High Energy Density Li‐S Batteries via Pore‐Structure Regulation of Porous Carbon Based Electrocatalyst
The mesopores and macropores within porous carbon materials help increase the surface for the depostion of solid‐state products, reduce the Li2S film thickness, enhance electron and mass transport, and accelerate the reaction kinetics. However, an excessive amount of mesopores and macropores can lead to increased electrolyte consumption, particularly at high sulfur loadings, where excessive electrolyte usage hampers the enhancement of practical energy density in lithium‐sulfur (Li‐S) batteries. A rational pore structure can minimize the amount of electrolyte to fill the pores, thereby reducing electrolyte consumption while achieving rapid reaction kinetics and a high gravimetric energy density. In this work, the pore structure of carbon nanosheet‐based electrocatalysts is precisely controlled by adjusting the content of a water‐soluble potassium chloride template, allowing for in‐depth investigation of the relationship between pore structure, electrolyte usage, and electrochemical performance in Li‐S batteries. The molybdenum carbide‐embedded carbon nanosheet (MoC‐CNS) electrocatalyst, with an optimized pore structure, facilitates exceptional electrochemical performance under high sulfur loading and lean electrolyte conditions. Ultimately, the MoC‐CNS‐3‐based Li‐S battery achieved stable operation over 50 cycles under high sulfur loading (12 mg cm−2) and a low electrolyte‐to‐sulfur (E/S) ratio of 4 uL mg−1, delivering a high gravimetric energy density of 354.5 Wh kg−1. This work provides a viable strategy for developing high‐performance Li‐S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信