利用4D - STEM研究固态锂离子电池阴极-电解质界面相形成

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Nikhila C. Paranamana, Andreas Werbrouck, Amit K. Datta, Xiaoqing He, Matthias J. Young
{"title":"利用4D - STEM研究固态锂离子电池阴极-电解质界面相形成","authors":"Nikhila C. Paranamana, Andreas Werbrouck, Amit K. Datta, Xiaoqing He, Matthias J. Young","doi":"10.1002/aenm.202403904","DOIUrl":null,"url":null,"abstract":"Interphase layers that form at contact points between the solid electrolyte (SE) and cathode active material in solid‐state lithium‐ion batteries (SS‐LIBs) increase cell impedance, but the mechanisms for this interphase formation are poorly understood. Here, we demonstrate a simple workflow to study cathode–electrolyte interphase (CEI) formation using 4D‐scanning transmission electron microscopy (4D‐STEM) that does not require SS‐LIB assembly. We show benefits of MoCl<jats:sub>5</jats:sub>:EtOH as a chemical delithiating agent, and prepare chemically delithiated cathode LiNi<jats:sub>0.6</jats:sub>Co<jats:sub>0.2</jats:sub>Mn<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (NMC) powder in contact with Li<jats:sub>10</jats:sub>GeP<jats:sub>2</jats:sub>S<jats:sub>12</jats:sub> (LGPS) SE powder as a SS‐LIB CEI surrogate. We map the composition and structure of the CEI layers using 4D‐STEM, energy dispersive X‐ray spectroscopy (EDS), and electron pair distribution function analysis (ePDF). EDS indicates O migration from NMC into LGPS. ePDF analysis indicates sulfate and phosphate formation localized on the surface of LGPS, as well as Li<jats:sub>2</jats:sub>O formation within the LGPS phase, and self‐decomposition of NMC. These results are consistent with an electrochemical self‐discharge mechanism for interphase formation arising from coupled redox reactions of sulfur oxidation in LGPS and transition metal reduction in NMC. This suggests that coatings which stop anion transport but allow Li<jats:sup>+</jats:sup> and e<jats:sup>−</jats:sup> transport may prevent interphase formation and reduce impedance in SS‐LIBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Cathode–Electrolyte Interphase Formation in Solid State Li‐Ion Batteries via 4D‐STEM\",\"authors\":\"Nikhila C. Paranamana, Andreas Werbrouck, Amit K. Datta, Xiaoqing He, Matthias J. Young\",\"doi\":\"10.1002/aenm.202403904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interphase layers that form at contact points between the solid electrolyte (SE) and cathode active material in solid‐state lithium‐ion batteries (SS‐LIBs) increase cell impedance, but the mechanisms for this interphase formation are poorly understood. Here, we demonstrate a simple workflow to study cathode–electrolyte interphase (CEI) formation using 4D‐scanning transmission electron microscopy (4D‐STEM) that does not require SS‐LIB assembly. We show benefits of MoCl<jats:sub>5</jats:sub>:EtOH as a chemical delithiating agent, and prepare chemically delithiated cathode LiNi<jats:sub>0.6</jats:sub>Co<jats:sub>0.2</jats:sub>Mn<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (NMC) powder in contact with Li<jats:sub>10</jats:sub>GeP<jats:sub>2</jats:sub>S<jats:sub>12</jats:sub> (LGPS) SE powder as a SS‐LIB CEI surrogate. We map the composition and structure of the CEI layers using 4D‐STEM, energy dispersive X‐ray spectroscopy (EDS), and electron pair distribution function analysis (ePDF). EDS indicates O migration from NMC into LGPS. ePDF analysis indicates sulfate and phosphate formation localized on the surface of LGPS, as well as Li<jats:sub>2</jats:sub>O formation within the LGPS phase, and self‐decomposition of NMC. These results are consistent with an electrochemical self‐discharge mechanism for interphase formation arising from coupled redox reactions of sulfur oxidation in LGPS and transition metal reduction in NMC. This suggests that coatings which stop anion transport but allow Li<jats:sup>+</jats:sup> and e<jats:sup>−</jats:sup> transport may prevent interphase formation and reduce impedance in SS‐LIBs.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202403904\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403904","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在固态锂离子电池(SS - lib)中,固态电解质(SE)和正极活性物质接触点处形成的间相层增加了电池阻抗,但这种间相形成的机制尚不清楚。在这里,我们展示了一个简单的工作流程来研究阴极-电解质间相(CEI)的形成,使用4D -扫描透射电子显微镜(4D - STEM),不需要SS - LIB组装。我们展示了MoCl5:EtOH作为化学去硫剂的好处,并制备了与Li10GeP2S12 (LGPS) SE粉末接触的化学去硫阴极LiNi0.6Co0.2Mn0.2O2 (NMC)粉末作为SS‐LIB CEI替代品。我们利用4D - STEM、能量色散X射线能谱(EDS)和电子对分布函数分析(ePDF)绘制了CEI层的组成和结构。EDS表示从NMC到LGPS的O迁移。ePDF分析表明,硫酸盐和磷酸盐的形成局限于LGPS表面,Li2O的形成在LGPS相内,NMC自分解。这些结果与LGPS中硫氧化和NMC中过渡金属还原的耦合氧化还原反应引起间相形成的电化学自放电机制一致。这表明阻止阴离子传输但允许Li+和e -传输的涂层可能会阻止间相形成并降低SS - lib中的阻抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Cathode–Electrolyte Interphase Formation in Solid State Li‐Ion Batteries via 4D‐STEM
Interphase layers that form at contact points between the solid electrolyte (SE) and cathode active material in solid‐state lithium‐ion batteries (SS‐LIBs) increase cell impedance, but the mechanisms for this interphase formation are poorly understood. Here, we demonstrate a simple workflow to study cathode–electrolyte interphase (CEI) formation using 4D‐scanning transmission electron microscopy (4D‐STEM) that does not require SS‐LIB assembly. We show benefits of MoCl5:EtOH as a chemical delithiating agent, and prepare chemically delithiated cathode LiNi0.6Co0.2Mn0.2O2 (NMC) powder in contact with Li10GeP2S12 (LGPS) SE powder as a SS‐LIB CEI surrogate. We map the composition and structure of the CEI layers using 4D‐STEM, energy dispersive X‐ray spectroscopy (EDS), and electron pair distribution function analysis (ePDF). EDS indicates O migration from NMC into LGPS. ePDF analysis indicates sulfate and phosphate formation localized on the surface of LGPS, as well as Li2O formation within the LGPS phase, and self‐decomposition of NMC. These results are consistent with an electrochemical self‐discharge mechanism for interphase formation arising from coupled redox reactions of sulfur oxidation in LGPS and transition metal reduction in NMC. This suggests that coatings which stop anion transport but allow Li+ and e transport may prevent interphase formation and reduce impedance in SS‐LIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信