{"title":"利用FTIR系统中光谱伪影的建模分析红外光源光谱特征的周期性时间变化","authors":"David Santalices, Juan Meléndez, Susana Briz","doi":"10.1016/j.jqsrt.2024.109320","DOIUrl":null,"url":null,"abstract":"Periodic fluctuations in the incoming spectrum to a Fourier-transform infrared (FTIR) spectrometer often result in spectral artifacts that can compromise quantitative measurements. This study presents a novel method that relaxes the conventional assumption of uniform fluctuations across all frequencies, by modeling the radiance fluctuations with a Fourier series expansion with wavenumber-dependent coefficients. By limiting the incoming spectral bandwidth with an interference filter, it is possible to retrieve the artifact-free average spectrum and to obtain the temporal evolution of the incident radiance. Experimental validation was conducted with transmittance measurements on a methane gas sample whose column density was periodically modulated. This method expands FTIR capabilities, particularly for applications involving fluctuating gases, and enhances the potential for time-resolved analysis in complex environments.","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of periodic temporal changes in the spectral signature of IR sources by modeling of spectral artifacts in FTIR systems\",\"authors\":\"David Santalices, Juan Meléndez, Susana Briz\",\"doi\":\"10.1016/j.jqsrt.2024.109320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic fluctuations in the incoming spectrum to a Fourier-transform infrared (FTIR) spectrometer often result in spectral artifacts that can compromise quantitative measurements. This study presents a novel method that relaxes the conventional assumption of uniform fluctuations across all frequencies, by modeling the radiance fluctuations with a Fourier series expansion with wavenumber-dependent coefficients. By limiting the incoming spectral bandwidth with an interference filter, it is possible to retrieve the artifact-free average spectrum and to obtain the temporal evolution of the incident radiance. Experimental validation was conducted with transmittance measurements on a methane gas sample whose column density was periodically modulated. This method expands FTIR capabilities, particularly for applications involving fluctuating gases, and enhances the potential for time-resolved analysis in complex environments.\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jqsrt.2024.109320\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.jqsrt.2024.109320","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Analysis of periodic temporal changes in the spectral signature of IR sources by modeling of spectral artifacts in FTIR systems
Periodic fluctuations in the incoming spectrum to a Fourier-transform infrared (FTIR) spectrometer often result in spectral artifacts that can compromise quantitative measurements. This study presents a novel method that relaxes the conventional assumption of uniform fluctuations across all frequencies, by modeling the radiance fluctuations with a Fourier series expansion with wavenumber-dependent coefficients. By limiting the incoming spectral bandwidth with an interference filter, it is possible to retrieve the artifact-free average spectrum and to obtain the temporal evolution of the incident radiance. Experimental validation was conducted with transmittance measurements on a methane gas sample whose column density was periodically modulated. This method expands FTIR capabilities, particularly for applications involving fluctuating gases, and enhances the potential for time-resolved analysis in complex environments.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.