{"title":"光活性层中异构化控制的聚集:效率超过19.5%的有机太阳能电池的添加剂策略","authors":"Zihao Xia, Chuanlin Gao, Zhixiang Xie, Miaoxuan Wu, Hansheng Chen, Tongzi Li, Jiang Zhou, Ting Cai, Huawei Hu, Jing Shuai, Chen Xie, Guangye Zhang, Wenduo Chen, Shenghua Liu","doi":"10.1002/anie.202421953","DOIUrl":null,"url":null,"abstract":"<p>Morphology control of the photoactive layer is crucial for achieving high-performance organic solar cells (OSCs), yet it remains a significant challenge in this field. One effective approach is the additive strategy, which fine-tunes the morphology of the photoactive layer. However, the underlying mechanisms governing the impact of different types of additives from liquid, solid, to volatile solid, on the bulk heterojunction morphology and device performance are not fully understood. Herein, we present an aggregation regulation strategy for acceptor molecules by incorporating three novel isomeric additives: 4-bromo-1,2-dichlorobenzene (LCB), 1-bromo-2,4-dichlorobenzene (SCB), and 2-bromo-1,4-dichlorobenzene (VCB) into the blend active layer. This approach optimizes the bulk heterojunction morphology and enhances the photovoltaic performance of OSCs. Our results reveal that these additives induce stepwise regulation of acceptor molecule aggregation during film formation. The liquid additive LCB primarily extends solvent evaporation time, effectively preventing excessive aggregation, while the solid additive SCB significantly shortens the aggregation period during the film evolution, resulting in the most compact molecular π–π stacking. Furthermore, the volatile solid additive VCB fine-tunes the intermolecular interactions and crystallization within the active layer, promoting optimal molecular self-assembly and aggregation for ideal molecular stacking. Consequently, the power conversion efficiencies of 19.33 % and 19.51 % were achieved for the VCB-processed D18 : L8-BO- and PM6 : L8-BO-based OSCs, respectively, outperforming the LCB-processed and SCB-processed devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 12","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isomerization-Controlled Aggregation in Photoactive Layer: An Additive Strategy for Organic Solar Cells with Over 19.5 % Efficiency\",\"authors\":\"Zihao Xia, Chuanlin Gao, Zhixiang Xie, Miaoxuan Wu, Hansheng Chen, Tongzi Li, Jiang Zhou, Ting Cai, Huawei Hu, Jing Shuai, Chen Xie, Guangye Zhang, Wenduo Chen, Shenghua Liu\",\"doi\":\"10.1002/anie.202421953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Morphology control of the photoactive layer is crucial for achieving high-performance organic solar cells (OSCs), yet it remains a significant challenge in this field. One effective approach is the additive strategy, which fine-tunes the morphology of the photoactive layer. However, the underlying mechanisms governing the impact of different types of additives from liquid, solid, to volatile solid, on the bulk heterojunction morphology and device performance are not fully understood. Herein, we present an aggregation regulation strategy for acceptor molecules by incorporating three novel isomeric additives: 4-bromo-1,2-dichlorobenzene (LCB), 1-bromo-2,4-dichlorobenzene (SCB), and 2-bromo-1,4-dichlorobenzene (VCB) into the blend active layer. This approach optimizes the bulk heterojunction morphology and enhances the photovoltaic performance of OSCs. Our results reveal that these additives induce stepwise regulation of acceptor molecule aggregation during film formation. The liquid additive LCB primarily extends solvent evaporation time, effectively preventing excessive aggregation, while the solid additive SCB significantly shortens the aggregation period during the film evolution, resulting in the most compact molecular π–π stacking. Furthermore, the volatile solid additive VCB fine-tunes the intermolecular interactions and crystallization within the active layer, promoting optimal molecular self-assembly and aggregation for ideal molecular stacking. Consequently, the power conversion efficiencies of 19.33 % and 19.51 % were achieved for the VCB-processed D18 : L8-BO- and PM6 : L8-BO-based OSCs, respectively, outperforming the LCB-processed and SCB-processed devices.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 12\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202421953\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202421953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Isomerization-Controlled Aggregation in Photoactive Layer: An Additive Strategy for Organic Solar Cells with Over 19.5 % Efficiency
Morphology control of the photoactive layer is crucial for achieving high-performance organic solar cells (OSCs), yet it remains a significant challenge in this field. One effective approach is the additive strategy, which fine-tunes the morphology of the photoactive layer. However, the underlying mechanisms governing the impact of different types of additives from liquid, solid, to volatile solid, on the bulk heterojunction morphology and device performance are not fully understood. Herein, we present an aggregation regulation strategy for acceptor molecules by incorporating three novel isomeric additives: 4-bromo-1,2-dichlorobenzene (LCB), 1-bromo-2,4-dichlorobenzene (SCB), and 2-bromo-1,4-dichlorobenzene (VCB) into the blend active layer. This approach optimizes the bulk heterojunction morphology and enhances the photovoltaic performance of OSCs. Our results reveal that these additives induce stepwise regulation of acceptor molecule aggregation during film formation. The liquid additive LCB primarily extends solvent evaporation time, effectively preventing excessive aggregation, while the solid additive SCB significantly shortens the aggregation period during the film evolution, resulting in the most compact molecular π–π stacking. Furthermore, the volatile solid additive VCB fine-tunes the intermolecular interactions and crystallization within the active layer, promoting optimal molecular self-assembly and aggregation for ideal molecular stacking. Consequently, the power conversion efficiencies of 19.33 % and 19.51 % were achieved for the VCB-processed D18 : L8-BO- and PM6 : L8-BO-based OSCs, respectively, outperforming the LCB-processed and SCB-processed devices.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.