非线性标量场方程的无穷多变号归一化解

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jiaxin Zhan, Jianjun Zhang, Xuexiu Zhong, Jinfang Zhou
{"title":"非线性标量场方程的无穷多变号归一化解","authors":"Jiaxin Zhan, Jianjun Zhang, Xuexiu Zhong, Jinfang Zhou","doi":"10.1016/j.aml.2024.109426","DOIUrl":null,"url":null,"abstract":"We study the existence of infinitely many sign-changing solutions to the following nonlinear scalar Schrödinger equation <ce:display><ce:formula><mml:math altimg=\"si1.svg\" display=\"block\"><mml:mrow><mml:mo>−</mml:mo><mml:mi>Δ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mspace width=\"1em\"></mml:mspace><mml:mtext>in</mml:mtext><mml:mspace width=\"1em\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math></ce:formula></ce:display>with a prescribed mass <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mo>∫</mml:mo></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>a</mml:mi><mml:mo>.</mml:mo></mml:mrow></mml:math> Here <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>f</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>, <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>a</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> is a given constant and <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> is an unknown parameter appearing as a Lagrange multiplier. Jeanjean and Lu have established the existence of infinitely many sign-changing normalized solutions in [Nonlinearity 32 (2019), no. 12, 4942–4966] and [Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 174, 43 pp.] for <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> or <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≥</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:math>. After fully utilizing the properties of positive solutions given by Jeanjean,Zhang and Zhong[J. Math. Pures Appl. (9) 183 (2024), 44–75], we give an alternative approach and extend the existence of infinitely many sign-changing normalized solutions to all <mml:math altimg=\"si8.svg\" display=\"inline\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">≥</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"22 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many sign-changing normalized solutions for nonlinear scalar field equations\",\"authors\":\"Jiaxin Zhan, Jianjun Zhang, Xuexiu Zhong, Jinfang Zhou\",\"doi\":\"10.1016/j.aml.2024.109426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of infinitely many sign-changing solutions to the following nonlinear scalar Schrödinger equation <ce:display><ce:formula><mml:math altimg=\\\"si1.svg\\\" display=\\\"block\\\"><mml:mrow><mml:mo>−</mml:mo><mml:mi>Δ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\\\"goodbreak\\\">+</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\\\"goodbreak\\\">=</mml:mo><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>u</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mspace width=\\\"1em\\\"></mml:mspace><mml:mtext>in</mml:mtext><mml:mspace width=\\\"1em\\\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math></ce:formula></ce:display>with a prescribed mass <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:msub><mml:mrow><mml:mo>∫</mml:mo></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\\\"normal\\\">d</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mi>a</mml:mi><mml:mo>.</mml:mo></mml:mrow></mml:math> Here <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>f</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∈</mml:mo><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>, <mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>a</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math> is a given constant and <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∈</mml:mo><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow></mml:math> is an unknown parameter appearing as a Lagrange multiplier. Jeanjean and Lu have established the existence of infinitely many sign-changing normalized solutions in [Nonlinearity 32 (2019), no. 12, 4942–4966] and [Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 174, 43 pp.] for <mml:math altimg=\\\"si6.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math> or <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≥</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:math>. After fully utilizing the properties of positive solutions given by Jeanjean,Zhang and Zhong[J. Math. Pures Appl. (9) 183 (2024), 44–75], we give an alternative approach and extend the existence of infinitely many sign-changing normalized solutions to all <mml:math altimg=\\\"si8.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>N</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≥</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math>.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109426\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109426","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下非线性标量方程Schrödinger - Δu+λu=f(u) inrn具有规定质量∫RN|u|2dx=a的无穷多个变符号解的存在性。这里f∈C1(R,R), a>;0是一个给定常数,λ∈R是一个以拉格朗日乘子形式出现的未知参数。Jeanjean和Lu在[非线性32 (2019),no. 6]中建立了无穷多个变符号归一化解的存在性。[j] .偏微分方程[j] .科学通报,2016,(1):1 - 2。[5] N=4或N≥6时,论文第174号,43页。充分利用Jeanjean、Zhang和Zhong给出的正解的性质[J]。数学。纯粹的达成。(9) 183(2024), 44-75),我们给出了一种替代方法,并将无穷多个变符号归一化解的存在性推广到所有N≥2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many sign-changing normalized solutions for nonlinear scalar field equations
We study the existence of infinitely many sign-changing solutions to the following nonlinear scalar Schrödinger equation Δu+λu=f(u)inRNwith a prescribed mass RN|u|2dx=a. Here fC1(R,R), a>0 is a given constant and λR is an unknown parameter appearing as a Lagrange multiplier. Jeanjean and Lu have established the existence of infinitely many sign-changing normalized solutions in [Nonlinearity 32 (2019), no. 12, 4942–4966] and [Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 174, 43 pp.] for N=4 or N6. After fully utilizing the properties of positive solutions given by Jeanjean,Zhang and Zhong[J. Math. Pures Appl. (9) 183 (2024), 44–75], we give an alternative approach and extend the existence of infinitely many sign-changing normalized solutions to all N2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信