{"title":"二阶泛函微分方程的无穷多正周期解","authors":"Weibing Wang, Shen Luo","doi":"10.1016/j.aml.2024.109431","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of infinitely many positive periodic solutions to a class of second order functional differential equations which cannot be applied directly to the fixed point theorem in cone. With suitable deformations, we construct the operator whose fixed point is closely related to the periodic solution of the original equation and show that the problem has infinitely many positive periodic solutions under appropriate conditions.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many positive periodic solutions for second order functional differential equations\",\"authors\":\"Weibing Wang, Shen Luo\",\"doi\":\"10.1016/j.aml.2024.109431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of infinitely many positive periodic solutions to a class of second order functional differential equations which cannot be applied directly to the fixed point theorem in cone. With suitable deformations, we construct the operator whose fixed point is closely related to the periodic solution of the original equation and show that the problem has infinitely many positive periodic solutions under appropriate conditions.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109431\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109431","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Infinitely many positive periodic solutions for second order functional differential equations
In this paper, we study the existence of infinitely many positive periodic solutions to a class of second order functional differential equations which cannot be applied directly to the fixed point theorem in cone. With suitable deformations, we construct the operator whose fixed point is closely related to the periodic solution of the original equation and show that the problem has infinitely many positive periodic solutions under appropriate conditions.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.