原位微相分离实现多尺度结构强而韧的摩擦电材料

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peng Lu, Yang Yang, Bin Luo, Chenchen Cai, Tao Liu, Song Zhang, Mingchao Chi, Tong Zhao, Jinlong Wang, Xiangjiang Meng, Yayu Bai, Yuzheng Shao, Guoli Du, Shuangfei Wang, Shuangxi Nie
{"title":"原位微相分离实现多尺度结构强而韧的摩擦电材料","authors":"Peng Lu,&nbsp;Yang Yang,&nbsp;Bin Luo,&nbsp;Chenchen Cai,&nbsp;Tao Liu,&nbsp;Song Zhang,&nbsp;Mingchao Chi,&nbsp;Tong Zhao,&nbsp;Jinlong Wang,&nbsp;Xiangjiang Meng,&nbsp;Yayu Bai,&nbsp;Yuzheng Shao,&nbsp;Guoli Du,&nbsp;Shuangfei Wang,&nbsp;Shuangxi Nie","doi":"10.1002/adfm.202418336","DOIUrl":null,"url":null,"abstract":"<p>Lightweight green polymer materials with exceptional toughness, high strength, and excellent ductility represent ideal candidates for enabling next-generation sustainable flexible electronics. However, the conflicting properties of material strength and toughness present a significant challenge in achieving an optimal combination of both attributes. In this study, a strong yet tough polymeric triboelectric material is prepared by constructing a multiscale reinforced network based on a nonsolvent-induced microphase separation strategy. The synergistic enhancement of strength and toughness is achieved by reinforcing non-covalent interactions within the polymer and constructing nanofibrous networks. The resulting triboelectric materials exhibited remarkable fracture toughness (78.6 MJ m<sup>−3</sup>), high tensile strength (42.5 MPa), an improvement in triboelectric output (71%), and promising recyclability. The integrated triboelectric wearable sensor maintained robust output signals. This study provides a novel solution for coordinating the conflicts between strength and toughness in heterogeneous polymer materials, showing significant potential in expanding their applications in flexible electronics and self-powered sensing technologies.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 17","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation\",\"authors\":\"Peng Lu,&nbsp;Yang Yang,&nbsp;Bin Luo,&nbsp;Chenchen Cai,&nbsp;Tao Liu,&nbsp;Song Zhang,&nbsp;Mingchao Chi,&nbsp;Tong Zhao,&nbsp;Jinlong Wang,&nbsp;Xiangjiang Meng,&nbsp;Yayu Bai,&nbsp;Yuzheng Shao,&nbsp;Guoli Du,&nbsp;Shuangfei Wang,&nbsp;Shuangxi Nie\",\"doi\":\"10.1002/adfm.202418336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lightweight green polymer materials with exceptional toughness, high strength, and excellent ductility represent ideal candidates for enabling next-generation sustainable flexible electronics. However, the conflicting properties of material strength and toughness present a significant challenge in achieving an optimal combination of both attributes. In this study, a strong yet tough polymeric triboelectric material is prepared by constructing a multiscale reinforced network based on a nonsolvent-induced microphase separation strategy. The synergistic enhancement of strength and toughness is achieved by reinforcing non-covalent interactions within the polymer and constructing nanofibrous networks. The resulting triboelectric materials exhibited remarkable fracture toughness (78.6 MJ m<sup>−3</sup>), high tensile strength (42.5 MPa), an improvement in triboelectric output (71%), and promising recyclability. The integrated triboelectric wearable sensor maintained robust output signals. This study provides a novel solution for coordinating the conflicts between strength and toughness in heterogeneous polymer materials, showing significant potential in expanding their applications in flexible electronics and self-powered sensing technologies.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 17\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418336\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202418336","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

轻质绿色高分子材料具有优异的韧性、高强度和优异的延展性,是实现下一代可持续柔性电子产品的理想候选材料。然而,材料强度和韧性的相互冲突的特性在实现这两个属性的最佳组合方面提出了重大挑战。在这项研究中,通过构建基于非溶剂诱导微相分离策略的多尺度增强网络,制备了一种强而坚韧的聚合物摩擦电材料。强度和韧性的协同增强是通过增强聚合物内部的非共价相互作用和构建纳米纤维网络来实现的。得到的摩擦电材料具有显著的断裂韧性(78.6 MJ m−3),高拉伸强度(42.5 MPa),摩擦电输出提高(71%),并且具有良好的可回收性。集成的摩擦电可穿戴传感器保持了稳健的输出信号。该研究为协调非均相聚合物材料的强度和韧性之间的冲突提供了一种新的解决方案,在扩展其在柔性电子和自供电传感技术中的应用方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation

Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation

Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation

Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation

Multiscale Structural Strong yet Tough Triboelectric Materials Enabled by In Situ Microphase Separation

Lightweight green polymer materials with exceptional toughness, high strength, and excellent ductility represent ideal candidates for enabling next-generation sustainable flexible electronics. However, the conflicting properties of material strength and toughness present a significant challenge in achieving an optimal combination of both attributes. In this study, a strong yet tough polymeric triboelectric material is prepared by constructing a multiscale reinforced network based on a nonsolvent-induced microphase separation strategy. The synergistic enhancement of strength and toughness is achieved by reinforcing non-covalent interactions within the polymer and constructing nanofibrous networks. The resulting triboelectric materials exhibited remarkable fracture toughness (78.6 MJ m−3), high tensile strength (42.5 MPa), an improvement in triboelectric output (71%), and promising recyclability. The integrated triboelectric wearable sensor maintained robust output signals. This study provides a novel solution for coordinating the conflicts between strength and toughness in heterogeneous polymer materials, showing significant potential in expanding their applications in flexible electronics and self-powered sensing technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信