原位重建的富羟基原子薄Bi2O2CO3能够通过活化水解离从CO2中合成安培级甲酸酯

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qizheng Huang, Zhengyi Qian, Na Ye, Yingjun Tan, Menggang Li, Mingchuan Luo, Shaojun Guo
{"title":"原位重建的富羟基原子薄Bi2O2CO3能够通过活化水解离从CO2中合成安培级甲酸酯","authors":"Qizheng Huang,&nbsp;Zhengyi Qian,&nbsp;Na Ye,&nbsp;Yingjun Tan,&nbsp;Menggang Li,&nbsp;Mingchuan Luo,&nbsp;Shaojun Guo","doi":"10.1002/adma.202415639","DOIUrl":null,"url":null,"abstract":"<p>Renewable electricity-driven CO<sub>2</sub> electroreduction provides a promising route toward carbon neutrality and sustainable chemical production. Nevertheless, the viability of this route faces constraints of catalytic efficiency and durability in near-neutral electrolytes at industrial-scale current densities, mechanistically originating from unfavorable accommodation of <sup>*</sup>H species from water dissociation. Herein, a new strategy is reported to accelerate water dissociation by the rich surface hydroxyl on bismuth subcarbonate nanosheets in situ electrochemical transformed from bismuth hydroxide nanotube precursors. This catalyst enables the electrosynthesis of formate at current densities up to 1000 mA cm<sup>−2</sup> with &gt;96% faradaic efficiencies in flow cells, and a 200 h durable membrane electrode assembly in a dilute near-neutral environment. Combined kinetic studies, in situ characterizations, and theoretical calculations reveal that the atomic thickness strengthens the hydroxyl adsorption, and with a highly localized electron configuration, the hydroxyl-functionalized surface is more affinitive to oxygenated species, thus lowering the barrier for water dissociation and the crucial hydrogenation step in the proton-coupled electron transfer from <sup>*</sup>OCHO to <sup>*</sup>HCOOH.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 7","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Reconstructed Hydroxyl-Rich Atomic-Thin Bi2O2CO3 Enables Ampere-Scale Synthesis of Formate from CO2 with Activated Water Dissociation\",\"authors\":\"Qizheng Huang,&nbsp;Zhengyi Qian,&nbsp;Na Ye,&nbsp;Yingjun Tan,&nbsp;Menggang Li,&nbsp;Mingchuan Luo,&nbsp;Shaojun Guo\",\"doi\":\"10.1002/adma.202415639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renewable electricity-driven CO<sub>2</sub> electroreduction provides a promising route toward carbon neutrality and sustainable chemical production. Nevertheless, the viability of this route faces constraints of catalytic efficiency and durability in near-neutral electrolytes at industrial-scale current densities, mechanistically originating from unfavorable accommodation of <sup>*</sup>H species from water dissociation. Herein, a new strategy is reported to accelerate water dissociation by the rich surface hydroxyl on bismuth subcarbonate nanosheets in situ electrochemical transformed from bismuth hydroxide nanotube precursors. This catalyst enables the electrosynthesis of formate at current densities up to 1000 mA cm<sup>−2</sup> with &gt;96% faradaic efficiencies in flow cells, and a 200 h durable membrane electrode assembly in a dilute near-neutral environment. Combined kinetic studies, in situ characterizations, and theoretical calculations reveal that the atomic thickness strengthens the hydroxyl adsorption, and with a highly localized electron configuration, the hydroxyl-functionalized surface is more affinitive to oxygenated species, thus lowering the barrier for water dissociation and the crucial hydrogenation step in the proton-coupled electron transfer from <sup>*</sup>OCHO to <sup>*</sup>HCOOH.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 7\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202415639\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202415639","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可再生电力驱动的二氧化碳电还原为实现碳中和和可持续化工生产提供了一条有希望的途径。然而,在工业规模的电流密度下,这种途径的可行性面临着催化效率和耐久性的限制,这在机械上源于水解离对*H物质的不利容纳。本文报道了一种由氢氧化铋纳米管前驱体原位电化学转化的亚碳酸铋纳米片表面丰富的羟基加速水解离的新策略。该催化剂使甲酸盐的电合成电流密度高达1000毫安厘米- 2,在流动电池中具有96%的法拉第效率,并在稀释的近中性环境中具有200小时的耐用膜电极组装。结合动力学研究、原位表征和理论计算表明,原子厚度加强了羟基的吸附,并且具有高度定域的电子构型,羟基功能化的表面对含氧物质更有亲和性,从而降低了水解离的障碍和质子耦合电子从*OCHO到*HCOOH的关键氢化步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Reconstructed Hydroxyl-Rich Atomic-Thin Bi2O2CO3 Enables Ampere-Scale Synthesis of Formate from CO2 with Activated Water Dissociation

In Situ Reconstructed Hydroxyl-Rich Atomic-Thin Bi2O2CO3 Enables Ampere-Scale Synthesis of Formate from CO2 with Activated Water Dissociation

Renewable electricity-driven CO2 electroreduction provides a promising route toward carbon neutrality and sustainable chemical production. Nevertheless, the viability of this route faces constraints of catalytic efficiency and durability in near-neutral electrolytes at industrial-scale current densities, mechanistically originating from unfavorable accommodation of *H species from water dissociation. Herein, a new strategy is reported to accelerate water dissociation by the rich surface hydroxyl on bismuth subcarbonate nanosheets in situ electrochemical transformed from bismuth hydroxide nanotube precursors. This catalyst enables the electrosynthesis of formate at current densities up to 1000 mA cm−2 with >96% faradaic efficiencies in flow cells, and a 200 h durable membrane electrode assembly in a dilute near-neutral environment. Combined kinetic studies, in situ characterizations, and theoretical calculations reveal that the atomic thickness strengthens the hydroxyl adsorption, and with a highly localized electron configuration, the hydroxyl-functionalized surface is more affinitive to oxygenated species, thus lowering the barrier for water dissociation and the crucial hydrogenation step in the proton-coupled electron transfer from *OCHO to *HCOOH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信