{"title":"不确定性原理,限制,布尔甘Λq定理,和信号恢复","authors":"A. Iosevich , A. Mayeli","doi":"10.1016/j.acha.2024.101734","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a finite abelian group. Let <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>C</mi></math></span> be a signal (i.e. function). The classical uncertainty principle asserts that the product of the size of the support of <em>f</em> and its Fourier transform <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, <span><math><mtext>supp</mtext><mo>(</mo><mi>f</mi><mo>)</mo></math></span> and <span><math><mtext>supp</mtext><mo>(</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> respectively, must satisfy the condition:<span><span><span><math><mo>|</mo><mtext>supp</mtext><mo>(</mo><mi>f</mi><mo>)</mo><mo>|</mo><mo>⋅</mo><mo>|</mo><mtext>supp</mtext><mo>(</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>|</mo><mo>≥</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>.</mo></math></span></span></span></div><div>In the first part of this paper, we improve the uncertainty principle for signals with Fourier transform supported on generic sets. This improvement is achieved by employing <em>the restriction theory</em>, including Bourgain celebrate result on <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-sets, and <em>the Salem set</em> mechanism from harmonic analysis. Then we investigate some applications of uncertainty principles that were developed in the first part of this paper, to the problem of unique recovery of finite sparse signals in the absence of some frequencies.</div><div>Donoho and Stark (<span><span>[14]</span></span>), and, independently, Matolcsi and Szucs (<span><span>[33]</span></span>) showed that a signal of length <em>N</em> can be recovered exactly, even if some of the frequencies are unobserved, provided that the product of the size of the number of non-zero entries of the signal and the number of missing frequencies is not too large, leveraging the classical uncertainty principle for vectors. Our results broaden the scope for a natural class of signals in higher-dimensional spaces. In the case when the signal is binary, we provide a very simple exact recovery mechanism through the DRA algorithm.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"76 ","pages":"Article 101734"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty principles, restriction, Bourgain's Λq theorem, and signal recovery\",\"authors\":\"A. Iosevich , A. Mayeli\",\"doi\":\"10.1016/j.acha.2024.101734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a finite abelian group. Let <span><math><mi>f</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>C</mi></math></span> be a signal (i.e. function). The classical uncertainty principle asserts that the product of the size of the support of <em>f</em> and its Fourier transform <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, <span><math><mtext>supp</mtext><mo>(</mo><mi>f</mi><mo>)</mo></math></span> and <span><math><mtext>supp</mtext><mo>(</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> respectively, must satisfy the condition:<span><span><span><math><mo>|</mo><mtext>supp</mtext><mo>(</mo><mi>f</mi><mo>)</mo><mo>|</mo><mo>⋅</mo><mo>|</mo><mtext>supp</mtext><mo>(</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>|</mo><mo>≥</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>.</mo></math></span></span></span></div><div>In the first part of this paper, we improve the uncertainty principle for signals with Fourier transform supported on generic sets. This improvement is achieved by employing <em>the restriction theory</em>, including Bourgain celebrate result on <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-sets, and <em>the Salem set</em> mechanism from harmonic analysis. Then we investigate some applications of uncertainty principles that were developed in the first part of this paper, to the problem of unique recovery of finite sparse signals in the absence of some frequencies.</div><div>Donoho and Stark (<span><span>[14]</span></span>), and, independently, Matolcsi and Szucs (<span><span>[33]</span></span>) showed that a signal of length <em>N</em> can be recovered exactly, even if some of the frequencies are unobserved, provided that the product of the size of the number of non-zero entries of the signal and the number of missing frequencies is not too large, leveraging the classical uncertainty principle for vectors. Our results broaden the scope for a natural class of signals in higher-dimensional spaces. In the case when the signal is binary, we provide a very simple exact recovery mechanism through the DRA algorithm.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"76 \",\"pages\":\"Article 101734\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324001118\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324001118","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Uncertainty principles, restriction, Bourgain's Λq theorem, and signal recovery
Let G be a finite abelian group. Let be a signal (i.e. function). The classical uncertainty principle asserts that the product of the size of the support of f and its Fourier transform , and respectively, must satisfy the condition:
In the first part of this paper, we improve the uncertainty principle for signals with Fourier transform supported on generic sets. This improvement is achieved by employing the restriction theory, including Bourgain celebrate result on -sets, and the Salem set mechanism from harmonic analysis. Then we investigate some applications of uncertainty principles that were developed in the first part of this paper, to the problem of unique recovery of finite sparse signals in the absence of some frequencies.
Donoho and Stark ([14]), and, independently, Matolcsi and Szucs ([33]) showed that a signal of length N can be recovered exactly, even if some of the frequencies are unobserved, provided that the product of the size of the number of non-zero entries of the signal and the number of missing frequencies is not too large, leveraging the classical uncertainty principle for vectors. Our results broaden the scope for a natural class of signals in higher-dimensional spaces. In the case when the signal is binary, we provide a very simple exact recovery mechanism through the DRA algorithm.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.