从高度计全聚焦SAR模式测量离最低点的河流水位和坡度

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Jiaming Chen, Luciana Fenoglio, Jürgen Kusche
{"title":"从高度计全聚焦SAR模式测量离最低点的河流水位和坡度","authors":"Jiaming Chen,&nbsp;Luciana Fenoglio,&nbsp;Jürgen Kusche","doi":"10.1016/j.jhydrol.2024.132553","DOIUrl":null,"url":null,"abstract":"<div><div>Observations of river water levels from nadir radar altimeters are currently limited by orbital spacing and by the winding nature of rivers, making them inadequate for monitoring the spatial–temporal dynamics of rivers. In this study, we developed an automatic off-nadir processing method to estimate water surface elevation and river slope in cross-track direction using Sentinel-3A/-3B and Sentinel-6A Fully-Focused SAR (FFSAR) processed data. Once the off-nadir reflected echoes are recorded in the range window, a slant range correction is applied to the retracked range to obtain the water level. From both the satellite altitude and the position of range window, we find that the maximum cross-track distance usable in this method is 6.6 km for Sentinel-3A/-3B and 9.3 km for Sentinel-6A. The validation of off-nadir water surface elevations (WSEs) in three rivers (Rhine, Danube, and Oder) against in-situ data, shows an accuracy in terms of standard deviation of difference (STDD) between 0.04 and 0.09 m for Sentinel-3A/-3B and Sentinel-6A. Moreover, the water surface slopes estimated from off-nadir processing, compared to slopes derived from in-situ data, show an accuracy, in terms of STDD, varying from 0.7 cm/km to 1.3 cm/km. Comparison of the river profiles over a 60-km river channel from off-nadir and wide-swath altimetry data, shows a STDD of 0.14 m for Sentinel-6 and 0.19 m for Sentinel-3B respectively. This study confirms the effectiveness of off-nadir processing in improving the accuracy of river surface elevation and slope measurements.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"650 ","pages":"Article 132553"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Off-nadir river water levels and slopes from altimeter Fully-Focused SAR mode\",\"authors\":\"Jiaming Chen,&nbsp;Luciana Fenoglio,&nbsp;Jürgen Kusche\",\"doi\":\"10.1016/j.jhydrol.2024.132553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Observations of river water levels from nadir radar altimeters are currently limited by orbital spacing and by the winding nature of rivers, making them inadequate for monitoring the spatial–temporal dynamics of rivers. In this study, we developed an automatic off-nadir processing method to estimate water surface elevation and river slope in cross-track direction using Sentinel-3A/-3B and Sentinel-6A Fully-Focused SAR (FFSAR) processed data. Once the off-nadir reflected echoes are recorded in the range window, a slant range correction is applied to the retracked range to obtain the water level. From both the satellite altitude and the position of range window, we find that the maximum cross-track distance usable in this method is 6.6 km for Sentinel-3A/-3B and 9.3 km for Sentinel-6A. The validation of off-nadir water surface elevations (WSEs) in three rivers (Rhine, Danube, and Oder) against in-situ data, shows an accuracy in terms of standard deviation of difference (STDD) between 0.04 and 0.09 m for Sentinel-3A/-3B and Sentinel-6A. Moreover, the water surface slopes estimated from off-nadir processing, compared to slopes derived from in-situ data, show an accuracy, in terms of STDD, varying from 0.7 cm/km to 1.3 cm/km. Comparison of the river profiles over a 60-km river channel from off-nadir and wide-swath altimetry data, shows a STDD of 0.14 m for Sentinel-6 and 0.19 m for Sentinel-3B respectively. This study confirms the effectiveness of off-nadir processing in improving the accuracy of river surface elevation and slope measurements.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"650 \",\"pages\":\"Article 132553\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424019498\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424019498","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

目前,利用最低点雷达高度计对河流水位的观测受到轨道间距和河流弯曲性质的限制,使其不足以监测河流的时空动态。利用Sentinel-3A/-3B和Sentinel-6A全聚焦SAR (full - focused SAR, FFSAR)处理的数据,开发了一种自动离底处理方法,用于估算跨轨道方向的水面高程和河流坡度。一旦在距离窗口中记录了离最低点反射回波,则对重新跟踪的距离进行倾斜距离校正以获得水位。从卫星高度和距离窗口位置来看,哨兵- 3a /-3B和哨兵- 6a的最大可用交叉航迹距离分别为6.6 km和9.3 km。根据原位数据验证了三条河流(莱茵河、多瑙河和奥德河)的离最低点水面高程(wse),结果表明,Sentinel-3A/-3B和Sentinel-6A的标准差(STDD)精度在0.04和0.09 m之间。此外,与从原位数据得到的坡度相比,通过离谷底处理估计的水面坡度显示出以STDD计算的精度,从0.7 cm/km到1.3 cm/km不等。从离最低点和宽波段的高程数据对比60公里河道的河流剖面,Sentinel-6和Sentinel-3B的STDD分别为0.14 m和0.19 m。本研究证实了离谷底处理在提高河面高程和坡度测量精度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Off-nadir river water levels and slopes from altimeter Fully-Focused SAR mode
Observations of river water levels from nadir radar altimeters are currently limited by orbital spacing and by the winding nature of rivers, making them inadequate for monitoring the spatial–temporal dynamics of rivers. In this study, we developed an automatic off-nadir processing method to estimate water surface elevation and river slope in cross-track direction using Sentinel-3A/-3B and Sentinel-6A Fully-Focused SAR (FFSAR) processed data. Once the off-nadir reflected echoes are recorded in the range window, a slant range correction is applied to the retracked range to obtain the water level. From both the satellite altitude and the position of range window, we find that the maximum cross-track distance usable in this method is 6.6 km for Sentinel-3A/-3B and 9.3 km for Sentinel-6A. The validation of off-nadir water surface elevations (WSEs) in three rivers (Rhine, Danube, and Oder) against in-situ data, shows an accuracy in terms of standard deviation of difference (STDD) between 0.04 and 0.09 m for Sentinel-3A/-3B and Sentinel-6A. Moreover, the water surface slopes estimated from off-nadir processing, compared to slopes derived from in-situ data, show an accuracy, in terms of STDD, varying from 0.7 cm/km to 1.3 cm/km. Comparison of the river profiles over a 60-km river channel from off-nadir and wide-swath altimetry data, shows a STDD of 0.14 m for Sentinel-6 and 0.19 m for Sentinel-3B respectively. This study confirms the effectiveness of off-nadir processing in improving the accuracy of river surface elevation and slope measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信