{"title":"模拟异孕酮对尖峰波放电的影响。","authors":"Maliha Ahmed, Sue Ann Campbell","doi":"10.1007/s10827-024-00887-x","DOIUrl":null,"url":null,"abstract":"<p><p>Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE. The conductance-based computational model consisted of single-compartment cortical pyramidal, cortical interneurons, thalamic reticular and thalamocortical relay neurons, each described by a set of ordinary differential equations. Excitatory and inhibitory synapses were mediated by AMPA, GABAa and GABAb receptors. The model was implemented using the NetPyne modelling tool and the NEURON simulator. It was found that the action of allopregnanolone (ALLO) on individual GABAa-receptor mediated synapses can have an ameliorating effect on spike-wave discharges (SWDs) associated with absence seizures. This effect is region-specific and most significant in the thalamus, particularly the synapses between thalamic reticular neurons. The remedying effect of allopregnanolone on SWDs may possibly be true only for individuals that are predisposed to remission due to intrinsic connectivity differences or differences in tonic inhibition. These results are a useful first-step and prescribe directions for further investigation into the role of ALLO together with these differences to distinguish between models for CAE-remitting and non-remitting individuals.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the effect of allopregnanolone on the resolution of spike-wave discharges.\",\"authors\":\"Maliha Ahmed, Sue Ann Campbell\",\"doi\":\"10.1007/s10827-024-00887-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE. The conductance-based computational model consisted of single-compartment cortical pyramidal, cortical interneurons, thalamic reticular and thalamocortical relay neurons, each described by a set of ordinary differential equations. Excitatory and inhibitory synapses were mediated by AMPA, GABAa and GABAb receptors. The model was implemented using the NetPyne modelling tool and the NEURON simulator. It was found that the action of allopregnanolone (ALLO) on individual GABAa-receptor mediated synapses can have an ameliorating effect on spike-wave discharges (SWDs) associated with absence seizures. This effect is region-specific and most significant in the thalamus, particularly the synapses between thalamic reticular neurons. The remedying effect of allopregnanolone on SWDs may possibly be true only for individuals that are predisposed to remission due to intrinsic connectivity differences or differences in tonic inhibition. These results are a useful first-step and prescribe directions for further investigation into the role of ALLO together with these differences to distinguish between models for CAE-remitting and non-remitting individuals.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-024-00887-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00887-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Modelling the effect of allopregnanolone on the resolution of spike-wave discharges.
Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE. The conductance-based computational model consisted of single-compartment cortical pyramidal, cortical interneurons, thalamic reticular and thalamocortical relay neurons, each described by a set of ordinary differential equations. Excitatory and inhibitory synapses were mediated by AMPA, GABAa and GABAb receptors. The model was implemented using the NetPyne modelling tool and the NEURON simulator. It was found that the action of allopregnanolone (ALLO) on individual GABAa-receptor mediated synapses can have an ameliorating effect on spike-wave discharges (SWDs) associated with absence seizures. This effect is region-specific and most significant in the thalamus, particularly the synapses between thalamic reticular neurons. The remedying effect of allopregnanolone on SWDs may possibly be true only for individuals that are predisposed to remission due to intrinsic connectivity differences or differences in tonic inhibition. These results are a useful first-step and prescribe directions for further investigation into the role of ALLO together with these differences to distinguish between models for CAE-remitting and non-remitting individuals.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.