Fabrizio Frontalini , Mattia Greco , Federica Semprucci , Kristina Cermakova , Thomas Merzi , Jan Pawlowski
{"title":"开发和测试基于海洋线虫元条形码的新生态质量状态指数:概念验证。","authors":"Fabrizio Frontalini , Mattia Greco , Federica Semprucci , Kristina Cermakova , Thomas Merzi , Jan Pawlowski","doi":"10.1016/j.chemosphere.2024.143992","DOIUrl":null,"url":null,"abstract":"<div><div>Nematodes are the most diverse and dominant group of marine meiofauna with high potential as bioindicators of the ecological quality status (EcoQS). The present study explores, for the first time, the applicability of the nematode metabarcoding to infer EcoQS index based on the calibration of ecological behaviors of nematodes Amplicon Sequence Variants (ASVs). To achieve this, we analyzed the nematode community in sediment eDNA samples collected in 2018 and 2021 in areas around three offshore oil platforms in the Danish west coast of the North Sea. One training dataset based on eDNA and environmental data from the three platforms in 2021 covering a wide range of environmental gradients has been used as a training dataset to assign the nematodes ASVs to Ecological Groups. These assignments then allowed us to infer the EcoQS both around these three platforms and in an independent dataset (one of the platforms sampled in 2018). The EcoQS inferred from the nema-gAMBI is perfectly in line with the pollution gradient of the platforms. In fact, stations located close to the platforms (i.e., 100 m and 250 m) show a relatively lower EcoQS than those at greater distance (i.e., reference or 3000 m). The nema-gAMBI seems to capture well the EcoQS variability around platforms and correlates well with the environmental parameters (e.g., trace element and hydrocarbon pollution). Indeed, the nema-gAMBI is positively and significantly correlated with the traditional macrofauna-based AMBI. The present proof of concept strongly advocates for the application of the nematode eDNA-based index in the evaluation of EcoQS.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"370 ","pages":"Article 143992"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing and testing a new Ecological Quality Status index based on marine nematode metabarcoding: A proof of concept\",\"authors\":\"Fabrizio Frontalini , Mattia Greco , Federica Semprucci , Kristina Cermakova , Thomas Merzi , Jan Pawlowski\",\"doi\":\"10.1016/j.chemosphere.2024.143992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nematodes are the most diverse and dominant group of marine meiofauna with high potential as bioindicators of the ecological quality status (EcoQS). The present study explores, for the first time, the applicability of the nematode metabarcoding to infer EcoQS index based on the calibration of ecological behaviors of nematodes Amplicon Sequence Variants (ASVs). To achieve this, we analyzed the nematode community in sediment eDNA samples collected in 2018 and 2021 in areas around three offshore oil platforms in the Danish west coast of the North Sea. One training dataset based on eDNA and environmental data from the three platforms in 2021 covering a wide range of environmental gradients has been used as a training dataset to assign the nematodes ASVs to Ecological Groups. These assignments then allowed us to infer the EcoQS both around these three platforms and in an independent dataset (one of the platforms sampled in 2018). The EcoQS inferred from the nema-gAMBI is perfectly in line with the pollution gradient of the platforms. In fact, stations located close to the platforms (i.e., 100 m and 250 m) show a relatively lower EcoQS than those at greater distance (i.e., reference or 3000 m). The nema-gAMBI seems to capture well the EcoQS variability around platforms and correlates well with the environmental parameters (e.g., trace element and hydrocarbon pollution). Indeed, the nema-gAMBI is positively and significantly correlated with the traditional macrofauna-based AMBI. The present proof of concept strongly advocates for the application of the nematode eDNA-based index in the evaluation of EcoQS.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"370 \",\"pages\":\"Article 143992\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004565352402900X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004565352402900X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Developing and testing a new Ecological Quality Status index based on marine nematode metabarcoding: A proof of concept
Nematodes are the most diverse and dominant group of marine meiofauna with high potential as bioindicators of the ecological quality status (EcoQS). The present study explores, for the first time, the applicability of the nematode metabarcoding to infer EcoQS index based on the calibration of ecological behaviors of nematodes Amplicon Sequence Variants (ASVs). To achieve this, we analyzed the nematode community in sediment eDNA samples collected in 2018 and 2021 in areas around three offshore oil platforms in the Danish west coast of the North Sea. One training dataset based on eDNA and environmental data from the three platforms in 2021 covering a wide range of environmental gradients has been used as a training dataset to assign the nematodes ASVs to Ecological Groups. These assignments then allowed us to infer the EcoQS both around these three platforms and in an independent dataset (one of the platforms sampled in 2018). The EcoQS inferred from the nema-gAMBI is perfectly in line with the pollution gradient of the platforms. In fact, stations located close to the platforms (i.e., 100 m and 250 m) show a relatively lower EcoQS than those at greater distance (i.e., reference or 3000 m). The nema-gAMBI seems to capture well the EcoQS variability around platforms and correlates well with the environmental parameters (e.g., trace element and hydrocarbon pollution). Indeed, the nema-gAMBI is positively and significantly correlated with the traditional macrofauna-based AMBI. The present proof of concept strongly advocates for the application of the nematode eDNA-based index in the evaluation of EcoQS.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.