基于Biomod2的气候变化下羊草全球地理分布及生态位动态估算

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
YanJing Zhang, Jie Hu, ChenBin Wang, YaQiong Wan, MuLan Ji, FangZhou Ma, YiQing Lu
{"title":"基于Biomod2的气候变化下羊草全球地理分布及生态位动态估算","authors":"YanJing Zhang, Jie Hu, ChenBin Wang, YaQiong Wan, MuLan Ji, FangZhou Ma, YiQing Lu","doi":"10.1038/s41598-024-82164-6","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive alien plants pose a significant threat to biodiversity and the agricultural economy. The invasive weed (Ammannia coccinea) competes with rice in paddy fields, potentially threatening rice production. Despite the crucial need to estimate the global geographical distribution and ecological niche dynamics of A. coccinea for effective early warning, control strategies, and global rice security, relevant research remains scarce. This study utilized the Biomod2 platform, which integrates multiple single models into ensemble model, incorporating environmental and species data to analyze the distribution range shifts of A. coccinea under current and future climate scenarios. It also quantified and analyzed shifts in the species' ecological niche across these climate scenarios. The results indicated that the potential suitable areas for A. coccinea were mainly in Southern North America, northern and south-eastern South America, south-western Europe, the Middle East, central Africa, western Asia, south-eastern Asia, with a gradual increase in mid-high suitability habitat over time and radiation levels. While the overall ecological niche of A. coccinea remains stable, minor shifts are expected under future conditions. Temperature, precipitation, and the human impact index were the key factors influencing the future distribution of A. coccinea. Climate change contributes to the expansion of A. coccinea's highly suitable areas and shifts its ecological niche. Organizations efforts should focus on preventing the spread of A. coccinea in regions where its potential distribution overlaps with key rice production areas. The findings of this study provide critical insights into the global distribution and ecological niche dynamics of A. coccinea, aiding in the development of early warning and control strategies to mitigate its impact on biodiversity, agriculture, and particularly rice production under future climate scenarios.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30579"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662028/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating global geographical distribution and ecological niche dynamics of Ammannia coccinea under climate change based on Biomod2.\",\"authors\":\"YanJing Zhang, Jie Hu, ChenBin Wang, YaQiong Wan, MuLan Ji, FangZhou Ma, YiQing Lu\",\"doi\":\"10.1038/s41598-024-82164-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive alien plants pose a significant threat to biodiversity and the agricultural economy. The invasive weed (Ammannia coccinea) competes with rice in paddy fields, potentially threatening rice production. Despite the crucial need to estimate the global geographical distribution and ecological niche dynamics of A. coccinea for effective early warning, control strategies, and global rice security, relevant research remains scarce. This study utilized the Biomod2 platform, which integrates multiple single models into ensemble model, incorporating environmental and species data to analyze the distribution range shifts of A. coccinea under current and future climate scenarios. It also quantified and analyzed shifts in the species' ecological niche across these climate scenarios. The results indicated that the potential suitable areas for A. coccinea were mainly in Southern North America, northern and south-eastern South America, south-western Europe, the Middle East, central Africa, western Asia, south-eastern Asia, with a gradual increase in mid-high suitability habitat over time and radiation levels. While the overall ecological niche of A. coccinea remains stable, minor shifts are expected under future conditions. Temperature, precipitation, and the human impact index were the key factors influencing the future distribution of A. coccinea. Climate change contributes to the expansion of A. coccinea's highly suitable areas and shifts its ecological niche. Organizations efforts should focus on preventing the spread of A. coccinea in regions where its potential distribution overlaps with key rice production areas. The findings of this study provide critical insights into the global distribution and ecological niche dynamics of A. coccinea, aiding in the development of early warning and control strategies to mitigate its impact on biodiversity, agriculture, and particularly rice production under future climate scenarios.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"30579\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662028/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-82164-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82164-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

外来入侵植物对生物多样性和农业经济构成重大威胁。入侵杂草(Ammannia coccinea)在稻田中与水稻竞争,可能威胁水稻生产。尽管对球菌绦虫的全球地理分布和生态位动态进行评估对有效的早期预警、控制策略和全球水稻安全至关重要,但相关研究仍然很少。本研究利用Biomod2平台,将多个单一模型整合为集合模型,结合环境和物种数据,分析了当前和未来气候情景下coccinea分布范围的变化。它还量化和分析了这些气候情景下物种生态位的变化。结果表明,瓢虫的潜在适宜生境主要分布在北美南部、南美北部和东南部、欧洲西南部、中东、中非、西亚和东南亚,生境中、高适宜度随时间和辐射水平逐渐增加。虽然球菌的整体生态位保持稳定,但预计在未来的条件下会发生轻微的变化。温度、降水和人为影响指数是影响球菌未来分布的关键因素。气候变化促进了葡萄球菌高度适宜区域的扩张,改变了其生态位。各组织的努力应侧重于防止球菌病在其潜在分布与主要稻米产区重叠的地区传播。本研究结果为了解球菌的全球分布和生态位动态提供了重要见解,有助于制定早期预警和控制策略,以减轻其在未来气候情景下对生物多样性、农业,特别是水稻生产的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating global geographical distribution and ecological niche dynamics of Ammannia coccinea under climate change based on Biomod2.

Invasive alien plants pose a significant threat to biodiversity and the agricultural economy. The invasive weed (Ammannia coccinea) competes with rice in paddy fields, potentially threatening rice production. Despite the crucial need to estimate the global geographical distribution and ecological niche dynamics of A. coccinea for effective early warning, control strategies, and global rice security, relevant research remains scarce. This study utilized the Biomod2 platform, which integrates multiple single models into ensemble model, incorporating environmental and species data to analyze the distribution range shifts of A. coccinea under current and future climate scenarios. It also quantified and analyzed shifts in the species' ecological niche across these climate scenarios. The results indicated that the potential suitable areas for A. coccinea were mainly in Southern North America, northern and south-eastern South America, south-western Europe, the Middle East, central Africa, western Asia, south-eastern Asia, with a gradual increase in mid-high suitability habitat over time and radiation levels. While the overall ecological niche of A. coccinea remains stable, minor shifts are expected under future conditions. Temperature, precipitation, and the human impact index were the key factors influencing the future distribution of A. coccinea. Climate change contributes to the expansion of A. coccinea's highly suitable areas and shifts its ecological niche. Organizations efforts should focus on preventing the spread of A. coccinea in regions where its potential distribution overlaps with key rice production areas. The findings of this study provide critical insights into the global distribution and ecological niche dynamics of A. coccinea, aiding in the development of early warning and control strategies to mitigate its impact on biodiversity, agriculture, and particularly rice production under future climate scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信