AqUavplant数据集:基于无人机的高分辨率水生植物分类分割图像数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Md Abrar Istiak, Razib Hayat Khan, Jahid Hasan Rony, M M Mahbubul Syeed, M Ashrafuzzaman, Md Rajaul Karim, Md Shakhawat Hossain, Mohammad Faisal Uddin
{"title":"AqUavplant数据集:基于无人机的高分辨率水生植物分类分割图像数据集。","authors":"Md Abrar Istiak, Razib Hayat Khan, Jahid Hasan Rony, M M Mahbubul Syeed, M Ashrafuzzaman, Md Rajaul Karim, Md Shakhawat Hossain, Mohammad Faisal Uddin","doi":"10.1038/s41597-024-04155-6","DOIUrl":null,"url":null,"abstract":"<p><p>Aquatic vegetation species are declining gradually, posing a threat to the stability of aquatic ecosystems. The decline can be controlled with proper monitoring and mapping of the species for effective conservation and management. The Unmanned Ariel Vehicle (UAV) aka Drone can be deployed to comprehensively capture large area of water bodies for effective mapping and monitoring. This study developed the AqUavplant dataset consisting of 197 high resolution (3840px  × 2160px, 4K) images of 31 aquatic plant species collected from nine different sites in Bangladesh. The DJI Mavic 3 Pro triple-camera professional drone is used with a ground sampling distance (GSD) value of 0.04-0.05 cm/px for optimal image collection without losing detail. The dataset is complemented with binary and multiclass semantic segmentation mask to facilitate ML based model development for automatic plant mapping. The dataset can be used to detect the diversity of indigenous and invasive species, monitor plant growth and diseases, measure the growth ratio to preserve biodiversity, and prevent extinction.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1411"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661991/pdf/","citationCount":"0","resultStr":"{\"title\":\"AqUavplant Dataset: A High-Resolution Aquatic Plant Classification and Segmentation Image Dataset Using UAV.\",\"authors\":\"Md Abrar Istiak, Razib Hayat Khan, Jahid Hasan Rony, M M Mahbubul Syeed, M Ashrafuzzaman, Md Rajaul Karim, Md Shakhawat Hossain, Mohammad Faisal Uddin\",\"doi\":\"10.1038/s41597-024-04155-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aquatic vegetation species are declining gradually, posing a threat to the stability of aquatic ecosystems. The decline can be controlled with proper monitoring and mapping of the species for effective conservation and management. The Unmanned Ariel Vehicle (UAV) aka Drone can be deployed to comprehensively capture large area of water bodies for effective mapping and monitoring. This study developed the AqUavplant dataset consisting of 197 high resolution (3840px  × 2160px, 4K) images of 31 aquatic plant species collected from nine different sites in Bangladesh. The DJI Mavic 3 Pro triple-camera professional drone is used with a ground sampling distance (GSD) value of 0.04-0.05 cm/px for optimal image collection without losing detail. The dataset is complemented with binary and multiclass semantic segmentation mask to facilitate ML based model development for automatic plant mapping. The dataset can be used to detect the diversity of indigenous and invasive species, monitor plant growth and diseases, measure the growth ratio to preserve biodiversity, and prevent extinction.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1411\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661991/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04155-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04155-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水生植被种类逐渐减少,对水生生态系统的稳定构成威胁。通过适当的监测和绘制物种分布图,有效的保护和管理可以控制物种的减少。无人驾驶Ariel车辆(UAV)又名无人机可以部署去全面捕获大面积水体用于有效测绘和监测。本研究开发了AqUavplant数据集,该数据集由197张高分辨率(3840px × 2160px, 4K)图像组成,其中包括从孟加拉国9个不同地点采集的31种水生植物。使用DJI Mavic 3 Pro三摄像头专业无人机,地面采样距离(GSD)值为0.04-0.05 cm/px,可在不丢失细节的情况下获得最佳图像采集。该数据集补充了二进制和多类语义分割掩码,以促进基于ML的自动植物映射模型开发。该数据集可用于检测本地和入侵物种的多样性,监测植物生长和病害,测量生长比以保护生物多样性,防止灭绝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

AqUavplant Dataset: A High-Resolution Aquatic Plant Classification and Segmentation Image Dataset Using UAV.

AqUavplant Dataset: A High-Resolution Aquatic Plant Classification and Segmentation Image Dataset Using UAV.

AqUavplant Dataset: A High-Resolution Aquatic Plant Classification and Segmentation Image Dataset Using UAV.

AqUavplant Dataset: A High-Resolution Aquatic Plant Classification and Segmentation Image Dataset Using UAV.

Aquatic vegetation species are declining gradually, posing a threat to the stability of aquatic ecosystems. The decline can be controlled with proper monitoring and mapping of the species for effective conservation and management. The Unmanned Ariel Vehicle (UAV) aka Drone can be deployed to comprehensively capture large area of water bodies for effective mapping and monitoring. This study developed the AqUavplant dataset consisting of 197 high resolution (3840px  × 2160px, 4K) images of 31 aquatic plant species collected from nine different sites in Bangladesh. The DJI Mavic 3 Pro triple-camera professional drone is used with a ground sampling distance (GSD) value of 0.04-0.05 cm/px for optimal image collection without losing detail. The dataset is complemented with binary and multiclass semantic segmentation mask to facilitate ML based model development for automatic plant mapping. The dataset can be used to detect the diversity of indigenous and invasive species, monitor plant growth and diseases, measure the growth ratio to preserve biodiversity, and prevent extinction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信