人工智能驱动的智能手机应用结肠镜肠道准备的临床试验:一项随机临床试验。

IF 1.6 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Huang Zhong, Cong Hou, Zhong Huang, Xinlian Chen, Yan Zou, Han Zhang, Tingyu Wang, Lan Wang, Xiangbing Huang, Yongfeng Xiang, Ming Zhong, Mingying Hu, Dongmei Xiong, Li Wang, Yuanyuan Zhang, Yan Luo, Yuting Guan, Mengyi Xia, Xiao Liu, Jinlin Yang, Tao Gan, Wei Wei, Honghan Chen, Hang Gong
{"title":"人工智能驱动的智能手机应用结肠镜肠道准备的临床试验:一项随机临床试验。","authors":"Huang Zhong, Cong Hou, Zhong Huang, Xinlian Chen, Yan Zou, Han Zhang, Tingyu Wang, Lan Wang, Xiangbing Huang, Yongfeng Xiang, Ming Zhong, Mingying Hu, Dongmei Xiong, Li Wang, Yuanyuan Zhang, Yan Luo, Yuting Guan, Mengyi Xia, Xiao Liu, Jinlin Yang, Tao Gan, Wei Wei, Honghan Chen, Hang Gong","doi":"10.1080/00365521.2024.2443520","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High-quality bowel preparation is paramount for a successful colonoscopy. This study aimed to explore the effect of artificial intelligence-driven smartphone software on the quality of bowel preparation.</p><p><strong>Methods: </strong>Firstly, we utilized 3305 valid liquid dung images collected <i>via</i> mobile phones as training data. the most effective model was employed on mobile phones to evaluate the quality of bowel preparation. Secondly, From May 2023 to September 2023, colonoscopy patients were randomly assigned to two groups - the AI group (<i>n</i> = 116) and the control group (<i>n</i> = 116) - using a randomized, controlled, endoscopist-blinded method. We compared the two groups in terms of Boston Bowel Preparation Scale (BBPS) scores, polyp detection rate, adverse reaction rate, and factors related to bowel preparation quality. The primary endpoint was the percentage of patients who achieved a BBPS ≥6 among those who effectively utilized the smartphone software.</p><p><strong>Results: </strong>EfficientNetV2 exhibited the highest performance, with an accuracy of 87%, a sensitivity of 83%, and an AUC of 0.86. In the patient validation experiment, the AI group had higher BBPS scores than the control group (6.78 ± 1.41 vs. 5.35 ± 2.01, <i>p</i> = 0.001) and showed an improvement in the detection rate (71.55% vs. 56.90%, <i>p</i> = 0.020) for polyps. Multifactor logistic analysis indicated that compliance with enema solution usage rules (OR: 5.850, 95% confidence interval: 2.022-16.923), total water intake (OR: 1.001, 95% confidence interval: 1.001-1.002), and AI software reminders (OR: 2.316, 95% confidence interval: 1.096-4.893) were independently associated with BBPS scores ≥6.</p><p><strong>Conclusion: </strong>Compared with traditional methods, the use of artificial intelligence combined with software to send reminders can lead to more accurate assessments of bowel preparation quality and an improved detection rate for polyps, thus demonstrating promising clinical value.</p>","PeriodicalId":21461,"journal":{"name":"Scandinavian Journal of Gastroenterology","volume":" ","pages":"1-6"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A clinical pilot trial of an artificial intelligence-driven smart phone application of bowel preparation for colonoscopy: a randomized clinical trial.\",\"authors\":\"Huang Zhong, Cong Hou, Zhong Huang, Xinlian Chen, Yan Zou, Han Zhang, Tingyu Wang, Lan Wang, Xiangbing Huang, Yongfeng Xiang, Ming Zhong, Mingying Hu, Dongmei Xiong, Li Wang, Yuanyuan Zhang, Yan Luo, Yuting Guan, Mengyi Xia, Xiao Liu, Jinlin Yang, Tao Gan, Wei Wei, Honghan Chen, Hang Gong\",\"doi\":\"10.1080/00365521.2024.2443520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High-quality bowel preparation is paramount for a successful colonoscopy. This study aimed to explore the effect of artificial intelligence-driven smartphone software on the quality of bowel preparation.</p><p><strong>Methods: </strong>Firstly, we utilized 3305 valid liquid dung images collected <i>via</i> mobile phones as training data. the most effective model was employed on mobile phones to evaluate the quality of bowel preparation. Secondly, From May 2023 to September 2023, colonoscopy patients were randomly assigned to two groups - the AI group (<i>n</i> = 116) and the control group (<i>n</i> = 116) - using a randomized, controlled, endoscopist-blinded method. We compared the two groups in terms of Boston Bowel Preparation Scale (BBPS) scores, polyp detection rate, adverse reaction rate, and factors related to bowel preparation quality. The primary endpoint was the percentage of patients who achieved a BBPS ≥6 among those who effectively utilized the smartphone software.</p><p><strong>Results: </strong>EfficientNetV2 exhibited the highest performance, with an accuracy of 87%, a sensitivity of 83%, and an AUC of 0.86. In the patient validation experiment, the AI group had higher BBPS scores than the control group (6.78 ± 1.41 vs. 5.35 ± 2.01, <i>p</i> = 0.001) and showed an improvement in the detection rate (71.55% vs. 56.90%, <i>p</i> = 0.020) for polyps. Multifactor logistic analysis indicated that compliance with enema solution usage rules (OR: 5.850, 95% confidence interval: 2.022-16.923), total water intake (OR: 1.001, 95% confidence interval: 1.001-1.002), and AI software reminders (OR: 2.316, 95% confidence interval: 1.096-4.893) were independently associated with BBPS scores ≥6.</p><p><strong>Conclusion: </strong>Compared with traditional methods, the use of artificial intelligence combined with software to send reminders can lead to more accurate assessments of bowel preparation quality and an improved detection rate for polyps, thus demonstrating promising clinical value.</p>\",\"PeriodicalId\":21461,\"journal\":{\"name\":\"Scandinavian Journal of Gastroenterology\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00365521.2024.2443520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00365521.2024.2443520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:高质量的肠道准备对结肠镜检查的成功至关重要。本研究旨在探讨人工智能驱动的智能手机软件对肠道准备质量的影响。方法:首先,利用手机采集的3305张有效粪液图像作为训练数据。最有效的模型是在手机上评估肠道准备的质量。其次,从2023年5月至2023年9月,采用随机、对照、内镜师盲法,将结肠镜检查患者随机分为AI组(n = 116)和对照组(n = 116)。我们比较两组患者的波士顿肠准备量表(BBPS)评分、息肉检出率、不良反应率和肠准备质量相关因素。主要终点是在有效使用智能手机软件的患者中达到BBPS≥6的患者百分比。结果:有效率netv2表现出最高的性能,准确度为87%,灵敏度为83%,AUC为0.86。在患者验证实验中,人工智能组的BBPS评分高于对照组(6.78±1.41比5.35±2.01,p = 0.001),对息肉的检出率(71.55%比56.90%,p = 0.020)有所提高。多因素logistic分析显示,患儿是否遵守灌肠液使用规则(OR: 5.850, 95%可信区间:2.022 ~ 16.923)、总饮水量(OR: 1.001, 95%可信区间:1.001 ~ 1.002)、人工智能软件提醒(OR: 2.316, 95%可信区间:1.096 ~ 4.893)与BBPS评分≥6分独立相关。结论:与传统方法相比,人工智能结合软件发送提醒能够更准确地评估肠道准备质量,提高息肉的检出率,具有良好的临床应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A clinical pilot trial of an artificial intelligence-driven smart phone application of bowel preparation for colonoscopy: a randomized clinical trial.

Background: High-quality bowel preparation is paramount for a successful colonoscopy. This study aimed to explore the effect of artificial intelligence-driven smartphone software on the quality of bowel preparation.

Methods: Firstly, we utilized 3305 valid liquid dung images collected via mobile phones as training data. the most effective model was employed on mobile phones to evaluate the quality of bowel preparation. Secondly, From May 2023 to September 2023, colonoscopy patients were randomly assigned to two groups - the AI group (n = 116) and the control group (n = 116) - using a randomized, controlled, endoscopist-blinded method. We compared the two groups in terms of Boston Bowel Preparation Scale (BBPS) scores, polyp detection rate, adverse reaction rate, and factors related to bowel preparation quality. The primary endpoint was the percentage of patients who achieved a BBPS ≥6 among those who effectively utilized the smartphone software.

Results: EfficientNetV2 exhibited the highest performance, with an accuracy of 87%, a sensitivity of 83%, and an AUC of 0.86. In the patient validation experiment, the AI group had higher BBPS scores than the control group (6.78 ± 1.41 vs. 5.35 ± 2.01, p = 0.001) and showed an improvement in the detection rate (71.55% vs. 56.90%, p = 0.020) for polyps. Multifactor logistic analysis indicated that compliance with enema solution usage rules (OR: 5.850, 95% confidence interval: 2.022-16.923), total water intake (OR: 1.001, 95% confidence interval: 1.001-1.002), and AI software reminders (OR: 2.316, 95% confidence interval: 1.096-4.893) were independently associated with BBPS scores ≥6.

Conclusion: Compared with traditional methods, the use of artificial intelligence combined with software to send reminders can lead to more accurate assessments of bowel preparation quality and an improved detection rate for polyps, thus demonstrating promising clinical value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.30%
发文量
222
审稿时长
3-8 weeks
期刊介绍: The Scandinavian Journal of Gastroenterology is one of the most important journals for international medical research in gastroenterology and hepatology with international contributors, Editorial Board, and distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信