William Leary, Matthew Johnson, Jessica Fletcher, Sara Branco
{"title":"外生菌根真菌短毛菌和毛毛菌对铅的耐受性。","authors":"William Leary, Matthew Johnson, Jessica Fletcher, Sara Branco","doi":"10.1007/s00572-024-01179-z","DOIUrl":null,"url":null,"abstract":"<p><p>Lead (Pb) is a highly toxic metal and a contaminant of many soils across the world. Some fungi are known to be Pb tolerant, persisting in environments with high Pb levels. Here we investigate Pb tolerance in Suillus brevipes and S. tomentosus, two widespread ectomycorrhizal fungal species in the American West where soil contamination due to mining is common. We conducted in vitro growth assays, exposing previously studied isolates to a range of Pb concentrations. We found S. tomentosus to be more Pb tolerant compared to S. brevipes and that isolates from the two species showed both high and low Pb tolerance. There were no correlations between Pb tolerance and Pb soil concentration, isolate growth rate, or Zn tolerance. Lead tolerance was positively correlated with Cd tolerance in S. tomentosus. Our research contributes for understanding fungal metal tolerance variability and paves the way for future work addressing the mechanisms of Pb tolerance and the potential for using Suillus in the recovery of contaminated sites.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 1","pages":"6"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lead (Pb) tolerance in the ectomycorrhizal fungi Suillus brevipes and S. tomentosus.\",\"authors\":\"William Leary, Matthew Johnson, Jessica Fletcher, Sara Branco\",\"doi\":\"10.1007/s00572-024-01179-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lead (Pb) is a highly toxic metal and a contaminant of many soils across the world. Some fungi are known to be Pb tolerant, persisting in environments with high Pb levels. Here we investigate Pb tolerance in Suillus brevipes and S. tomentosus, two widespread ectomycorrhizal fungal species in the American West where soil contamination due to mining is common. We conducted in vitro growth assays, exposing previously studied isolates to a range of Pb concentrations. We found S. tomentosus to be more Pb tolerant compared to S. brevipes and that isolates from the two species showed both high and low Pb tolerance. There were no correlations between Pb tolerance and Pb soil concentration, isolate growth rate, or Zn tolerance. Lead tolerance was positively correlated with Cd tolerance in S. tomentosus. Our research contributes for understanding fungal metal tolerance variability and paves the way for future work addressing the mechanisms of Pb tolerance and the potential for using Suillus in the recovery of contaminated sites.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":\"35 1\",\"pages\":\"6\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01179-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01179-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Lead (Pb) tolerance in the ectomycorrhizal fungi Suillus brevipes and S. tomentosus.
Lead (Pb) is a highly toxic metal and a contaminant of many soils across the world. Some fungi are known to be Pb tolerant, persisting in environments with high Pb levels. Here we investigate Pb tolerance in Suillus brevipes and S. tomentosus, two widespread ectomycorrhizal fungal species in the American West where soil contamination due to mining is common. We conducted in vitro growth assays, exposing previously studied isolates to a range of Pb concentrations. We found S. tomentosus to be more Pb tolerant compared to S. brevipes and that isolates from the two species showed both high and low Pb tolerance. There were no correlations between Pb tolerance and Pb soil concentration, isolate growth rate, or Zn tolerance. Lead tolerance was positively correlated with Cd tolerance in S. tomentosus. Our research contributes for understanding fungal metal tolerance variability and paves the way for future work addressing the mechanisms of Pb tolerance and the potential for using Suillus in the recovery of contaminated sites.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.