María Eugenia Antona, Cecilia Ramos, Ricardo Orzuza, Germán Esteban González, Paula Mariela González, Joaquín Cabrera, Andrea Gloria Ferreira Monteiro, Valeria Zago, Silvia María Friedman, Tammy Steimetz, Elisa Vanesa Macri
{"title":"姜黄素可减轻高胆固醇血症大鼠牙周炎引起的组织损伤:一种天然的预防方法。","authors":"María Eugenia Antona, Cecilia Ramos, Ricardo Orzuza, Germán Esteban González, Paula Mariela González, Joaquín Cabrera, Andrea Gloria Ferreira Monteiro, Valeria Zago, Silvia María Friedman, Tammy Steimetz, Elisa Vanesa Macri","doi":"10.1007/s10266-024-01042-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the preventive effect of curcumin (CUR) on tooth-supporting structures in hypercholesterolemic (HC) rats with periodontitis (P). Wistar rats (8 weeks old) (n = 30) were assigned to six groups based on dietary intake, CUR-piperine combination treatment and P induction. P was induced in four groups using a ligature model. Serum lipid profiles, oxidative stress parameters, radiographic, histological and histomorphometric analyses were performed. HC rats showed elevated serum cholesterol levels (p < 0.001). Moreover, topical administration of CUR did not regulate hypercholesterolemia in this model. The HC diet increased oxidative stress in gingival tissue, exacerbated by P, whereas CUR attenuated reactive species generation (p < 0.001) and reduced catalase (CAT) activity, possibly due to its antioxidant properties. Histological analysis revealed extensive erosive surfaces and osteoclast presence in the P groups, with the HC + P group showing the highest rate of bone resorption. The CUR-treated groups showed less bone resorption and more bone formation, indicating a protective effect. Histomorphometric studies showed a significant increase in bone volume in the CUR groups compared to the P groups (p < 0.001). CUR prevented bone resorption induced by P and HC diet, with larger osteoblastic surfaces and fewer osteoclasts, suggesting inhibition of bone resorption. CUR also prevented collagen fiber destruction caused by the HC diet. Overall, the study suggests a potential therapeutic role for CUR in mitigating periodontal tissue damage associated with hypercholesterolemia and P, due to its antioxidant and anti-inflammatory properties. Further research would be needed to validate its clinical efficacy as an adjunctive treatment for P.</p>","PeriodicalId":19390,"journal":{"name":"Odontology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curcumin administration mitigates periodontitis-induced tissue damage in hypercholesterolemic rats: a natural preventive approach.\",\"authors\":\"María Eugenia Antona, Cecilia Ramos, Ricardo Orzuza, Germán Esteban González, Paula Mariela González, Joaquín Cabrera, Andrea Gloria Ferreira Monteiro, Valeria Zago, Silvia María Friedman, Tammy Steimetz, Elisa Vanesa Macri\",\"doi\":\"10.1007/s10266-024-01042-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the preventive effect of curcumin (CUR) on tooth-supporting structures in hypercholesterolemic (HC) rats with periodontitis (P). Wistar rats (8 weeks old) (n = 30) were assigned to six groups based on dietary intake, CUR-piperine combination treatment and P induction. P was induced in four groups using a ligature model. Serum lipid profiles, oxidative stress parameters, radiographic, histological and histomorphometric analyses were performed. HC rats showed elevated serum cholesterol levels (p < 0.001). Moreover, topical administration of CUR did not regulate hypercholesterolemia in this model. The HC diet increased oxidative stress in gingival tissue, exacerbated by P, whereas CUR attenuated reactive species generation (p < 0.001) and reduced catalase (CAT) activity, possibly due to its antioxidant properties. Histological analysis revealed extensive erosive surfaces and osteoclast presence in the P groups, with the HC + P group showing the highest rate of bone resorption. The CUR-treated groups showed less bone resorption and more bone formation, indicating a protective effect. Histomorphometric studies showed a significant increase in bone volume in the CUR groups compared to the P groups (p < 0.001). CUR prevented bone resorption induced by P and HC diet, with larger osteoblastic surfaces and fewer osteoclasts, suggesting inhibition of bone resorption. CUR also prevented collagen fiber destruction caused by the HC diet. Overall, the study suggests a potential therapeutic role for CUR in mitigating periodontal tissue damage associated with hypercholesterolemia and P, due to its antioxidant and anti-inflammatory properties. Further research would be needed to validate its clinical efficacy as an adjunctive treatment for P.</p>\",\"PeriodicalId\":19390,\"journal\":{\"name\":\"Odontology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Odontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10266-024-01042-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Odontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10266-024-01042-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Curcumin administration mitigates periodontitis-induced tissue damage in hypercholesterolemic rats: a natural preventive approach.
This study investigated the preventive effect of curcumin (CUR) on tooth-supporting structures in hypercholesterolemic (HC) rats with periodontitis (P). Wistar rats (8 weeks old) (n = 30) were assigned to six groups based on dietary intake, CUR-piperine combination treatment and P induction. P was induced in four groups using a ligature model. Serum lipid profiles, oxidative stress parameters, radiographic, histological and histomorphometric analyses were performed. HC rats showed elevated serum cholesterol levels (p < 0.001). Moreover, topical administration of CUR did not regulate hypercholesterolemia in this model. The HC diet increased oxidative stress in gingival tissue, exacerbated by P, whereas CUR attenuated reactive species generation (p < 0.001) and reduced catalase (CAT) activity, possibly due to its antioxidant properties. Histological analysis revealed extensive erosive surfaces and osteoclast presence in the P groups, with the HC + P group showing the highest rate of bone resorption. The CUR-treated groups showed less bone resorption and more bone formation, indicating a protective effect. Histomorphometric studies showed a significant increase in bone volume in the CUR groups compared to the P groups (p < 0.001). CUR prevented bone resorption induced by P and HC diet, with larger osteoblastic surfaces and fewer osteoclasts, suggesting inhibition of bone resorption. CUR also prevented collagen fiber destruction caused by the HC diet. Overall, the study suggests a potential therapeutic role for CUR in mitigating periodontal tissue damage associated with hypercholesterolemia and P, due to its antioxidant and anti-inflammatory properties. Further research would be needed to validate its clinical efficacy as an adjunctive treatment for P.
期刊介绍:
The Journal Odontology covers all disciplines involved in the fields of dentistry and craniofacial research, including molecular studies related to oral health and disease. Peer-reviewed articles cover topics ranging from research on human dental pulp, to comparisons of analgesics in surgery, to analysis of biofilm properties of dental plaque.