聚焦硫酸软骨素,来自海参的一种有趣的多糖:过去,现在和未来。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Adriani L Felix, Suzane M Penno, Francisco F Bezerra, Paulo A S Mourão
{"title":"聚焦硫酸软骨素,来自海参的一种有趣的多糖:过去,现在和未来。","authors":"Adriani L Felix, Suzane M Penno, Francisco F Bezerra, Paulo A S Mourão","doi":"10.1093/glycob/cwae098","DOIUrl":null,"url":null,"abstract":"<p><p>Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fucosylated chondroitin sulfate, an intriguing polysaccharide from sea cucumber: past, present, and future.\",\"authors\":\"Adriani L Felix, Suzane M Penno, Francisco F Bezerra, Paulo A S Mourão\",\"doi\":\"10.1093/glycob/cwae098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.</p>\",\"PeriodicalId\":12766,\"journal\":{\"name\":\"Glycobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/glycob/cwae098\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwae098","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚焦硫酸软骨素(FCS)是一种独特的多糖,近40年前首次被发现,只存在于海参中。它是细胞外基质的一个组成部分,可能与无脊椎动物组织的特殊性质有关。该碳水化合物具有硫酸软骨素核心,其硫酸化α-Fuc分支与β-GlcA的3位相连。不同海参种类的fcs具有相似的硫酸软骨素核,但硫酸化α-Fuc分支结构差异较大。主要模式是由单个硫酸化α-Fuc单位组成,尽管一些物种具有多个α-Fuc单位的分支。本文对FCS的四个主要方面进行了综述。首先,我们描述了用经典的碳水化合物化学方法来阐明FCS结构的初步方法。其次,我们强调了二维核磁共振方法在巩固和揭示FCS结构的进一步细节方面的影响。这些研究是由不同国家的不同研究人员进行的,涉及多种海参。第三,总结了已报道的FCS的生物活性。我们的调查确定了来自42种海参的104份涉及FCS的出版物,报告了10种生物活动。大多数研究集中在抗凝血和抗血栓活性上。最后,我们讨论了FCS相关研究的未来前景。这些研究旨在阐明海参在发展这种特殊的集中糖胺聚糖方面的进化优势。此外,还需要确定参与这种独特碳水化合物代谢的酶和基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fucosylated chondroitin sulfate, an intriguing polysaccharide from sea cucumber: past, present, and future.

Fucosylated chondroitin sulfate (FCS) is a unique polysaccharide, first described nearly four decades ago, and found exclusively in sea cucumbers. It is a component of the extracellular matrix, possibly associated with peculiar properties of the invertebrate tissue. The carbohydrate features a chondroitin sulfate core with branches of sulfated α-Fuc linked to position 3 of the β-GlcA. FCSs from different species of sea cucumbers share a similar chondroitin sulfate core but the structure of the sulfated α-Fuc branches varies significantly. The predominant pattern consists of a single unit of sulfated α-Fuc, though some species exhibit branches with multiple α-Fuc units. This comprehensive review focuses on four major aspects of FCS. Firstly, we describe the initial approaches to elucidate the structure of FCS using classical methods of carbohydrate chemistry. Secondly, we highlight the impact of two-dimensional NMR methods in consolidating and revealing further details about the structure of FCS. These studies were conducted by various researchers across different countries and involving multiple species of sea cucumbers. Thirdly, we summarize the biological activities reported for FCS. Our survey identified 104 publications involving FCS from 42 species of sea cucumbers, reporting 10 types of biological activities. Most studies focused on anticoagulant and antithrombotic activities. Finally, we discuss future perspectives for studies related to FCS. These studies aim to clarify the evolutionary advantage for sea cucumbers in developing such a peculiar fucosylated glycosaminoglycan. Additionally, there is a need to identify the enzymes and genes involved in the metabolism of this unique carbohydrate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glycobiology
Glycobiology 生物-生化与分子生物学
CiteScore
7.50
自引率
4.70%
发文量
73
审稿时长
3 months
期刊介绍: Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases). Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信