{"title":"循环游离DNA甲基化IGFBP作为2型糖尿病生物标志物的潜力:全面综述","authors":"Audrey Belinda, Farizky Martriano Humardani, Sulistyo Emantoko Dwi Putra, Bhanu Widyadhana","doi":"10.1016/j.cca.2024.120104","DOIUrl":null,"url":null,"abstract":"<p><p>T2DM detection methods are commonly used in teens and adults but are generally unsuitable to unborn fetuses in the context of non-invasive prenatal testing (NIPT). Biophysical and biochemical tests for fetuses are often invasive, carry risks, and have low sensitivity and specificity, with no direct method available to diagnose T2DM in utero. In contrast, cell-free DNA (cfDNA) is known have high sensitivity (93-98 %) and specificity (94-100 %) for cancer detection and fetal genetic disorders (trisomy 21, 8, and 13) making it applicable for fetal epigenetic and genetic analysis, including T2DM early detection. However, no study has explored its use for this purpose. Our review focuses on the potential of IGFBP methylation levels in cfDNA as biomarkers for NIPT of T2DM. Placental global hypomethylation in GDM may predict T2DM during the prenatal period, and a similar pattern potentially be detected in cfDNA. Targeted genes reliable for NIPT, such as IGFBPs are needed because their significant role in T2DM and GDM. Among these, IGFBP-1 and IGFBP-2 have shown potential as predictive genes, exhibiting hypermethylation in placental tissue from GDM cases. This hypermethylation reduces their expression and the formation of the IGF-1-IGFBP complex, leading to increased levels of free IGF-1, which is associated with T2DM in the fetus. Hypermethylation regions have longer fragment sizes in cfDNA, thus in T2DM cases, hypermethylation of IGFBP-1 and IGFBP-2 from fetus results in longer cfDNA fragments. Therefore, analyzing the methylation levels and fragment sizes of IGFBP-1 or IGFBP-2 cfDNA could be a promising biomarker for identifying fetal T2DM risk non-invasively.</p>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":" ","pages":"120104"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The potential of circulating free DNA of methylated IGFBP as a biomarker for type 2 diabetes Mellitus: A Comprehensive review.\",\"authors\":\"Audrey Belinda, Farizky Martriano Humardani, Sulistyo Emantoko Dwi Putra, Bhanu Widyadhana\",\"doi\":\"10.1016/j.cca.2024.120104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>T2DM detection methods are commonly used in teens and adults but are generally unsuitable to unborn fetuses in the context of non-invasive prenatal testing (NIPT). Biophysical and biochemical tests for fetuses are often invasive, carry risks, and have low sensitivity and specificity, with no direct method available to diagnose T2DM in utero. In contrast, cell-free DNA (cfDNA) is known have high sensitivity (93-98 %) and specificity (94-100 %) for cancer detection and fetal genetic disorders (trisomy 21, 8, and 13) making it applicable for fetal epigenetic and genetic analysis, including T2DM early detection. However, no study has explored its use for this purpose. Our review focuses on the potential of IGFBP methylation levels in cfDNA as biomarkers for NIPT of T2DM. Placental global hypomethylation in GDM may predict T2DM during the prenatal period, and a similar pattern potentially be detected in cfDNA. Targeted genes reliable for NIPT, such as IGFBPs are needed because their significant role in T2DM and GDM. Among these, IGFBP-1 and IGFBP-2 have shown potential as predictive genes, exhibiting hypermethylation in placental tissue from GDM cases. This hypermethylation reduces their expression and the formation of the IGF-1-IGFBP complex, leading to increased levels of free IGF-1, which is associated with T2DM in the fetus. Hypermethylation regions have longer fragment sizes in cfDNA, thus in T2DM cases, hypermethylation of IGFBP-1 and IGFBP-2 from fetus results in longer cfDNA fragments. Therefore, analyzing the methylation levels and fragment sizes of IGFBP-1 or IGFBP-2 cfDNA could be a promising biomarker for identifying fetal T2DM risk non-invasively.</p>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":\" \",\"pages\":\"120104\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cca.2024.120104\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cca.2024.120104","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
The potential of circulating free DNA of methylated IGFBP as a biomarker for type 2 diabetes Mellitus: A Comprehensive review.
T2DM detection methods are commonly used in teens and adults but are generally unsuitable to unborn fetuses in the context of non-invasive prenatal testing (NIPT). Biophysical and biochemical tests for fetuses are often invasive, carry risks, and have low sensitivity and specificity, with no direct method available to diagnose T2DM in utero. In contrast, cell-free DNA (cfDNA) is known have high sensitivity (93-98 %) and specificity (94-100 %) for cancer detection and fetal genetic disorders (trisomy 21, 8, and 13) making it applicable for fetal epigenetic and genetic analysis, including T2DM early detection. However, no study has explored its use for this purpose. Our review focuses on the potential of IGFBP methylation levels in cfDNA as biomarkers for NIPT of T2DM. Placental global hypomethylation in GDM may predict T2DM during the prenatal period, and a similar pattern potentially be detected in cfDNA. Targeted genes reliable for NIPT, such as IGFBPs are needed because their significant role in T2DM and GDM. Among these, IGFBP-1 and IGFBP-2 have shown potential as predictive genes, exhibiting hypermethylation in placental tissue from GDM cases. This hypermethylation reduces their expression and the formation of the IGF-1-IGFBP complex, leading to increased levels of free IGF-1, which is associated with T2DM in the fetus. Hypermethylation regions have longer fragment sizes in cfDNA, thus in T2DM cases, hypermethylation of IGFBP-1 and IGFBP-2 from fetus results in longer cfDNA fragments. Therefore, analyzing the methylation levels and fragment sizes of IGFBP-1 or IGFBP-2 cfDNA could be a promising biomarker for identifying fetal T2DM risk non-invasively.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.