消极情绪时大脑边缘皮层和伏隔核振荡信号动力学的性别差异。

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Behavioural Brain Research Pub Date : 2025-03-05 Epub Date: 2024-12-18 DOI:10.1016/j.bbr.2024.115404
Pedro L Rodriguez-Echemendia, Regina M Carelli
{"title":"消极情绪时大脑边缘皮层和伏隔核振荡信号动力学的性别差异。","authors":"Pedro L Rodriguez-Echemendia, Regina M Carelli","doi":"10.1016/j.bbr.2024.115404","DOIUrl":null,"url":null,"abstract":"<p><p>Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males. Here, we sought to determine if the prelimbic cortex (PrL) to nucleus accumbens (NAc) core circuit, another prefrontal cortex-accumbens system, tracks innate versus learned negative affect using electrophysiological (local field potential, LFP) methods in male and female rats. As expected, CTA elicited a hedonic shift from an appetitive to an aversive TR profile, regardless of sex. However, time-frequency analyses revealed differential activity in the PrL and NAc core during innate and learned negative affect across sex. Specifically, we found that beta oscillations in the NAc core encode learned negative affect in males, while neither brain region seems to be selectively attuned to innate or learned aversion in females. Importantly, LFP functional connectivity (coherence) indicated that the PrL-NAc core circuit does not track any aspect of learned negative affect in either sex but may be involved in innate aversion in males only. Collectively, these data provide a sex-specific understanding of real-time oscillatory signaling dynamics in the PrL and NAc core during innate versus learned negative affect.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115404"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex differences in oscillatory signaling dynamics in the prelimbic cortex and nucleus accumbens core during negative affect.\",\"authors\":\"Pedro L Rodriguez-Echemendia, Regina M Carelli\",\"doi\":\"10.1016/j.bbr.2024.115404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males. Here, we sought to determine if the prelimbic cortex (PrL) to nucleus accumbens (NAc) core circuit, another prefrontal cortex-accumbens system, tracks innate versus learned negative affect using electrophysiological (local field potential, LFP) methods in male and female rats. As expected, CTA elicited a hedonic shift from an appetitive to an aversive TR profile, regardless of sex. However, time-frequency analyses revealed differential activity in the PrL and NAc core during innate and learned negative affect across sex. Specifically, we found that beta oscillations in the NAc core encode learned negative affect in males, while neither brain region seems to be selectively attuned to innate or learned aversion in females. Importantly, LFP functional connectivity (coherence) indicated that the PrL-NAc core circuit does not track any aspect of learned negative affect in either sex but may be involved in innate aversion in males only. Collectively, these data provide a sex-specific understanding of real-time oscillatory signaling dynamics in the PrL and NAc core during innate versus learned negative affect.</p>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\" \",\"pages\":\"115404\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbr.2024.115404\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115404","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

情感处理对指导行为很重要,它的功能障碍会导致多种精神疾病,包括抑郁症和物质使用障碍。条件性味觉厌恶(CTA)用于研究习得性情感转移,而味觉反应性(TR)可以有效地追踪在条件性味觉厌恶(CTA)前后食欲和厌恶味觉物质的享乐特性。虽然边缘下皮层(IL)及其向伏隔核(NAc)壳的投射在习得性消极情绪中起着关键作用,但这种作用仅适用于男性。在这里,我们试图确定前额叶皮层(PrL)到伏隔核(NAc)核心回路,另一个前额叶皮层-伏隔核系统,是否使用电生理(局部场电位,LFP)方法在雄性和雌性大鼠中跟踪先天和习得的消极情绪。正如预期的那样,CTA引起了从食欲到厌恶的TR特征的享乐转变,与性别无关。然而,时间-频率分析显示,在先天和习得的消极情绪中,PrL和NAc核心的活动存在性别差异。具体来说,我们发现男性NAc核心的β振荡编码习得性消极情绪,而女性的这两个大脑区域似乎都没有选择性地适应先天或习得性厌恶。重要的是,LFP功能连通性(连贯性)表明PrL-NAc核心回路不跟踪任何性别习得性消极情绪的任何方面,而可能只涉及男性的先天厌恶。总的来说,这些数据提供了先天和习得消极情绪期间PrL和NAc核心实时振荡信号动力学的性别特异性理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sex differences in oscillatory signaling dynamics in the prelimbic cortex and nucleus accumbens core during negative affect.

Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males. Here, we sought to determine if the prelimbic cortex (PrL) to nucleus accumbens (NAc) core circuit, another prefrontal cortex-accumbens system, tracks innate versus learned negative affect using electrophysiological (local field potential, LFP) methods in male and female rats. As expected, CTA elicited a hedonic shift from an appetitive to an aversive TR profile, regardless of sex. However, time-frequency analyses revealed differential activity in the PrL and NAc core during innate and learned negative affect across sex. Specifically, we found that beta oscillations in the NAc core encode learned negative affect in males, while neither brain region seems to be selectively attuned to innate or learned aversion in females. Importantly, LFP functional connectivity (coherence) indicated that the PrL-NAc core circuit does not track any aspect of learned negative affect in either sex but may be involved in innate aversion in males only. Collectively, these data provide a sex-specific understanding of real-time oscillatory signaling dynamics in the PrL and NAc core during innate versus learned negative affect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信