{"title":"基于有机-无机聚丙烯酰胺的表面印迹量子点用于唾液中安定的阻抗和伏安检测。","authors":"Oluwasesan Adegoke, Kayode Oyinlola, Kayode Omotayo Adeniyi, Ojodomo J Achadu, Zhugen Yang, Niamh Nic Daeid","doi":"10.1016/j.talanta.2024.127400","DOIUrl":null,"url":null,"abstract":"<p><p>Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO<sub>2</sub>-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein. Specifically, electrochemical characterization of the QDs/SPCE using cyclic voltammetry (CV) revealed that the QDs exhibit a higher electrode surface area whilst electrochemical impedance spectroscopy (EIS) characterization demonstrated a lower charge transfer resistance (R<sub>ct</sub>). To fabricate the electrochemical nanosensor, firstly, alloyed AuZnCeSeS QDs were synthesized in the organic phase and thereafter capped with 3-mercaptopropionic acid (MPA) via a ligand exchange reaction. The MPA-AuZnCeSeS QDs were encapsulated in a SiO<sub>2</sub> layer to form a SiO<sub>2</sub>-MPA AuZnCeSeS QDs system. The QDs were drop-casted onto SPCEs to form a SiO<sub>2</sub>-MPA AuZnCeSeS QDs/SPCE transducer interface. Organic based acrylamide, used as a functional monomer, was electropolymerized via CV on the QDs/SPCE in the presence of the diazepam template with ethylene glycol dimethacrylate as a crosslinker and 2,2'-azobis(2-methylpropionitrile) as an initiator. Under optimum experimental conditions, DZP was detected using EIS and square wave voltammetry (SWV). Using a portable potentiostat and a hand-held smartphone-based potentiostat, DZP was quantitatively detected in saliva using the MIP@QDs/SPCE with a limit of detection (LOD) of 2.3 μM and 2.7 μM, respectively. The LOD for DZP from SWV analysis was 1.0 μM.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127400"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An organic-inorganic polyacrylamide-based surface imprinted quantum dots for the impedimetric and voltammetric detection of diazepam in saliva with smartphone readout.\",\"authors\":\"Oluwasesan Adegoke, Kayode Oyinlola, Kayode Omotayo Adeniyi, Ojodomo J Achadu, Zhugen Yang, Niamh Nic Daeid\",\"doi\":\"10.1016/j.talanta.2024.127400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO<sub>2</sub>-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein. Specifically, electrochemical characterization of the QDs/SPCE using cyclic voltammetry (CV) revealed that the QDs exhibit a higher electrode surface area whilst electrochemical impedance spectroscopy (EIS) characterization demonstrated a lower charge transfer resistance (R<sub>ct</sub>). To fabricate the electrochemical nanosensor, firstly, alloyed AuZnCeSeS QDs were synthesized in the organic phase and thereafter capped with 3-mercaptopropionic acid (MPA) via a ligand exchange reaction. The MPA-AuZnCeSeS QDs were encapsulated in a SiO<sub>2</sub> layer to form a SiO<sub>2</sub>-MPA AuZnCeSeS QDs system. The QDs were drop-casted onto SPCEs to form a SiO<sub>2</sub>-MPA AuZnCeSeS QDs/SPCE transducer interface. Organic based acrylamide, used as a functional monomer, was electropolymerized via CV on the QDs/SPCE in the presence of the diazepam template with ethylene glycol dimethacrylate as a crosslinker and 2,2'-azobis(2-methylpropionitrile) as an initiator. Under optimum experimental conditions, DZP was detected using EIS and square wave voltammetry (SWV). Using a portable potentiostat and a hand-held smartphone-based potentiostat, DZP was quantitatively detected in saliva using the MIP@QDs/SPCE with a limit of detection (LOD) of 2.3 μM and 2.7 μM, respectively. The LOD for DZP from SWV analysis was 1.0 μM.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"285 \",\"pages\":\"127400\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127400\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127400","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An organic-inorganic polyacrylamide-based surface imprinted quantum dots for the impedimetric and voltammetric detection of diazepam in saliva with smartphone readout.
Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO2-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein. Specifically, electrochemical characterization of the QDs/SPCE using cyclic voltammetry (CV) revealed that the QDs exhibit a higher electrode surface area whilst electrochemical impedance spectroscopy (EIS) characterization demonstrated a lower charge transfer resistance (Rct). To fabricate the electrochemical nanosensor, firstly, alloyed AuZnCeSeS QDs were synthesized in the organic phase and thereafter capped with 3-mercaptopropionic acid (MPA) via a ligand exchange reaction. The MPA-AuZnCeSeS QDs were encapsulated in a SiO2 layer to form a SiO2-MPA AuZnCeSeS QDs system. The QDs were drop-casted onto SPCEs to form a SiO2-MPA AuZnCeSeS QDs/SPCE transducer interface. Organic based acrylamide, used as a functional monomer, was electropolymerized via CV on the QDs/SPCE in the presence of the diazepam template with ethylene glycol dimethacrylate as a crosslinker and 2,2'-azobis(2-methylpropionitrile) as an initiator. Under optimum experimental conditions, DZP was detected using EIS and square wave voltammetry (SWV). Using a portable potentiostat and a hand-held smartphone-based potentiostat, DZP was quantitatively detected in saliva using the MIP@QDs/SPCE with a limit of detection (LOD) of 2.3 μM and 2.7 μM, respectively. The LOD for DZP from SWV analysis was 1.0 μM.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.