{"title":"探索扫描电化学探针显微镜在单一实体分析在生物学:过去,现在和未来。","authors":"Hanhui Yan , Zhipeng Zhang","doi":"10.1016/j.bios.2024.117060","DOIUrl":null,"url":null,"abstract":"<div><div>Scanning Electrochemical Probe Microscopy (SEPM) shows significant potential promise for analyzing localized electrochemical activity at biological interfaces of single entities. Utilizing various SEPM probe manipulations allows real-time monitoring of the morphology and physiological activities of single biological entities, offering vital electrochemical insights into biological processes. This review focuses on the application of five SEPM techniques in imaging single biological entities, highlighting their unique advantages in the observation and quantitative evaluation of biological morphology. Specifically, these techniques not only enable high-resolution imaging of single biological structures but also allow for quantitative analysis of their response behavior. Additionally, the integration of Artificial Intelligence (AI) is discussed to improve data processing and image analysis, potentially advancing SEPM technology towards automation. Although still in an early stage, AI integration opens new avenues for deeper single-entity analysis. This review aims to offer an interdisciplinary perspective and encourage advancements in SEPM-based imaging and analytical techniques, contributing to the bioanalytical field.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"271 ","pages":"Article 117060"},"PeriodicalIF":10.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring scanning electrochemical probe microscopy in single-entity analysis in biology: Past, present, and future\",\"authors\":\"Hanhui Yan , Zhipeng Zhang\",\"doi\":\"10.1016/j.bios.2024.117060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Scanning Electrochemical Probe Microscopy (SEPM) shows significant potential promise for analyzing localized electrochemical activity at biological interfaces of single entities. Utilizing various SEPM probe manipulations allows real-time monitoring of the morphology and physiological activities of single biological entities, offering vital electrochemical insights into biological processes. This review focuses on the application of five SEPM techniques in imaging single biological entities, highlighting their unique advantages in the observation and quantitative evaluation of biological morphology. Specifically, these techniques not only enable high-resolution imaging of single biological structures but also allow for quantitative analysis of their response behavior. Additionally, the integration of Artificial Intelligence (AI) is discussed to improve data processing and image analysis, potentially advancing SEPM technology towards automation. Although still in an early stage, AI integration opens new avenues for deeper single-entity analysis. This review aims to offer an interdisciplinary perspective and encourage advancements in SEPM-based imaging and analytical techniques, contributing to the bioanalytical field.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"271 \",\"pages\":\"Article 117060\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566324010674\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324010674","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Exploring scanning electrochemical probe microscopy in single-entity analysis in biology: Past, present, and future
Scanning Electrochemical Probe Microscopy (SEPM) shows significant potential promise for analyzing localized electrochemical activity at biological interfaces of single entities. Utilizing various SEPM probe manipulations allows real-time monitoring of the morphology and physiological activities of single biological entities, offering vital electrochemical insights into biological processes. This review focuses on the application of five SEPM techniques in imaging single biological entities, highlighting their unique advantages in the observation and quantitative evaluation of biological morphology. Specifically, these techniques not only enable high-resolution imaging of single biological structures but also allow for quantitative analysis of their response behavior. Additionally, the integration of Artificial Intelligence (AI) is discussed to improve data processing and image analysis, potentially advancing SEPM technology towards automation. Although still in an early stage, AI integration opens new avenues for deeper single-entity analysis. This review aims to offer an interdisciplinary perspective and encourage advancements in SEPM-based imaging and analytical techniques, contributing to the bioanalytical field.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.