Katie A Walker, Justin N Vignola, Trinity K Rudd, C Linn Cadieux, Robert C diTargiani
{"title":"建立液相色谱-串联质谱(LC-MS/MS)测定KIKO小鼠血浆中肟类物质的方法并进行验证。","authors":"Katie A Walker, Justin N Vignola, Trinity K Rudd, C Linn Cadieux, Robert C diTargiani","doi":"10.1016/j.jchromb.2024.124426","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical warfare nerve agents (CWNAs) are potent and irreversible inhibitors of acetylcholinesterase (AChE). Oxime reactivators are an important part of the standard treatment for CWNA exposure as they can reactivate inhibited AChE. Evaluating the oxime candidates of interest in biological samples requires analytical detection methods and oxime reactivators as a class of compounds have historically been notoriously difficult to isolate, detect and analyze in an analytical laboratory, and there are currently no sensitive or robust analytical detection methods in the literature. The goal of this study was to develop reliable and robust novel extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to detect and quantitate 2-PAM, HI-6, HLö-7, and MMB-4 in a human AChE knock-in, mouse carboxylesterase knock-out (KIKO) mouse in vivo model. This study identified an LC column that achieved retention for all four oxime compounds which is a major advancement over past oxime methods. A unique extraction and chromatographic method was developed for each oxime. The developed methods were sensitive down to 0.5 ng/mL for 2-PAM, 50 ng/mL for HI-6, and 15 ng/mL for both HLö-7 and MMB-4. These methods were validated to meet the Food and Drug Administration (FDA) bioanalytical method validation requirements under Good Laboratory Practice (GLP) conditions. The 4 methods were validated for performance by assessing linearity, sensitivity, precision, accuracy, selectivity, specificity, carryover, extraction recovery, dilution analysis, and stability.</p>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1251 ","pages":"124426"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of oximes in KIKO mouse plasma.\",\"authors\":\"Katie A Walker, Justin N Vignola, Trinity K Rudd, C Linn Cadieux, Robert C diTargiani\",\"doi\":\"10.1016/j.jchromb.2024.124426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical warfare nerve agents (CWNAs) are potent and irreversible inhibitors of acetylcholinesterase (AChE). Oxime reactivators are an important part of the standard treatment for CWNA exposure as they can reactivate inhibited AChE. Evaluating the oxime candidates of interest in biological samples requires analytical detection methods and oxime reactivators as a class of compounds have historically been notoriously difficult to isolate, detect and analyze in an analytical laboratory, and there are currently no sensitive or robust analytical detection methods in the literature. The goal of this study was to develop reliable and robust novel extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to detect and quantitate 2-PAM, HI-6, HLö-7, and MMB-4 in a human AChE knock-in, mouse carboxylesterase knock-out (KIKO) mouse in vivo model. This study identified an LC column that achieved retention for all four oxime compounds which is a major advancement over past oxime methods. A unique extraction and chromatographic method was developed for each oxime. The developed methods were sensitive down to 0.5 ng/mL for 2-PAM, 50 ng/mL for HI-6, and 15 ng/mL for both HLö-7 and MMB-4. These methods were validated to meet the Food and Drug Administration (FDA) bioanalytical method validation requirements under Good Laboratory Practice (GLP) conditions. The 4 methods were validated for performance by assessing linearity, sensitivity, precision, accuracy, selectivity, specificity, carryover, extraction recovery, dilution analysis, and stability.</p>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1251 \",\"pages\":\"124426\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jchromb.2024.124426\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.jchromb.2024.124426","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of oximes in KIKO mouse plasma.
Chemical warfare nerve agents (CWNAs) are potent and irreversible inhibitors of acetylcholinesterase (AChE). Oxime reactivators are an important part of the standard treatment for CWNA exposure as they can reactivate inhibited AChE. Evaluating the oxime candidates of interest in biological samples requires analytical detection methods and oxime reactivators as a class of compounds have historically been notoriously difficult to isolate, detect and analyze in an analytical laboratory, and there are currently no sensitive or robust analytical detection methods in the literature. The goal of this study was to develop reliable and robust novel extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to detect and quantitate 2-PAM, HI-6, HLö-7, and MMB-4 in a human AChE knock-in, mouse carboxylesterase knock-out (KIKO) mouse in vivo model. This study identified an LC column that achieved retention for all four oxime compounds which is a major advancement over past oxime methods. A unique extraction and chromatographic method was developed for each oxime. The developed methods were sensitive down to 0.5 ng/mL for 2-PAM, 50 ng/mL for HI-6, and 15 ng/mL for both HLö-7 and MMB-4. These methods were validated to meet the Food and Drug Administration (FDA) bioanalytical method validation requirements under Good Laboratory Practice (GLP) conditions. The 4 methods were validated for performance by assessing linearity, sensitivity, precision, accuracy, selectivity, specificity, carryover, extraction recovery, dilution analysis, and stability.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.