利用距离图曲率划分地质多孔介质孔隙空间

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Ilan Ben-Noah, Juan J. Hidalgo, Marco Dentz
{"title":"利用距离图曲率划分地质多孔介质孔隙空间","authors":"Ilan Ben-Noah,&nbsp;Juan J. Hidalgo,&nbsp;Marco Dentz","doi":"10.1007/s11242-024-02142-4","DOIUrl":null,"url":null,"abstract":"<div><p>Media classification and the construction of pore network models from binary images of porous media hinges on accurately characterizing the pore space. We present a new method for (i) locating critical points, that is, pore body and throat centers, and (ii) partitioning of the pore space using information on the curvature of the distance map (DM) of the binary image. Specifically, we use the local maxima and minima of the determinant map of the Hessian matrix of the DM to locate the center of pore bodies and throats. The locating step provides structural information on the pore system, such as pore body and throat size distributions and the mean coordination number. The partitioning step is based on the eigenvalues of the Hessian, rather than the DM, to characterize the pore space using either watershed or medial-axis transforms. This strategy eliminates the common problem of saddle-induced over-partitioning shared by all traditional marker-based watershed methods and represents an alternative method to determine the skeleton of the pore space without the need for morphological reconstruction.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02142-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Pore-space partitioning in geological porous media using the curvature of the distance map\",\"authors\":\"Ilan Ben-Noah,&nbsp;Juan J. Hidalgo,&nbsp;Marco Dentz\",\"doi\":\"10.1007/s11242-024-02142-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Media classification and the construction of pore network models from binary images of porous media hinges on accurately characterizing the pore space. We present a new method for (i) locating critical points, that is, pore body and throat centers, and (ii) partitioning of the pore space using information on the curvature of the distance map (DM) of the binary image. Specifically, we use the local maxima and minima of the determinant map of the Hessian matrix of the DM to locate the center of pore bodies and throats. The locating step provides structural information on the pore system, such as pore body and throat size distributions and the mean coordination number. The partitioning step is based on the eigenvalues of the Hessian, rather than the DM, to characterize the pore space using either watershed or medial-axis transforms. This strategy eliminates the common problem of saddle-induced over-partitioning shared by all traditional marker-based watershed methods and represents an alternative method to determine the skeleton of the pore space without the need for morphological reconstruction.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-024-02142-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-024-02142-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02142-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于多孔介质二值图像的介质分类和孔隙网络模型的构建取决于孔隙空间的准确表征。我们提出了一种新的方法来(i)定位关键点,即孔体和喉中心,以及(ii)利用二值图像的距离图(DM)的曲率信息划分孔空间。具体来说,我们使用DM的Hessian矩阵的行列式映射的局部最大值和最小值来定位孔体和喉的中心。定位步骤提供孔隙系统的结构信息,如孔体和喉道尺寸分布以及平均配位数。划分步骤是基于Hessian的特征值,而不是DM,使用分水岭或中轴变换来表征孔隙空间。该策略消除了所有传统的基于标记的分水岭方法共同存在的鞍区导致的过度划分问题,并代表了一种无需形态重建即可确定孔隙空间骨架的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pore-space partitioning in geological porous media using the curvature of the distance map

Media classification and the construction of pore network models from binary images of porous media hinges on accurately characterizing the pore space. We present a new method for (i) locating critical points, that is, pore body and throat centers, and (ii) partitioning of the pore space using information on the curvature of the distance map (DM) of the binary image. Specifically, we use the local maxima and minima of the determinant map of the Hessian matrix of the DM to locate the center of pore bodies and throats. The locating step provides structural information on the pore system, such as pore body and throat size distributions and the mean coordination number. The partitioning step is based on the eigenvalues of the Hessian, rather than the DM, to characterize the pore space using either watershed or medial-axis transforms. This strategy eliminates the common problem of saddle-induced over-partitioning shared by all traditional marker-based watershed methods and represents an alternative method to determine the skeleton of the pore space without the need for morphological reconstruction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信