{"title":"热单点增量成形过程的热-力耦合模型","authors":"Narinder Kumar, Mohit Mahala, Anupam Agrawal","doi":"10.1007/s43452-024-01107-0","DOIUrl":null,"url":null,"abstract":"<div><p>Single point incremental forming (SPIF) is a low-cost, low-volume forming technique that has gained the attention of researchers over the past two decades. However, it has primarily been utilized for ductile materials such as aluminum and steel alloys and has yet to be extensively explored for hard-to-form materials such as magnesium (Mg) alloys, which are widely used in aviation and automotive industries. The hexagonal close-packed structure of these alloys makes it challenging to deform at room temperature. Studies have shown that the formability of Mg alloys can be increased under warm forming conditions. The analytical model needs to be developed to understand the effect of temperature on material properties and process parameters and their dependencies on each other. The present work proposes an analytical thermal model to predict in-plane strains during the warm SPIF process of magnesium (AZ31B) alloy. A coupled thermo-mechanical numerical simulation model was developed using ABAQUS/EXPLICIT<sup>®</sup> software to estimate in-plane strains and thickness distribution. The Johnson–Cook model was applied to define the fracture criterion and the constitutive model. The predictions of the analytical and numerical models developed in this study were compared with experimental results. Further, the study investigated the impact of step depth, tool diameter, and wall angle on formability and thickness distribution. The predictions from the model developed in this study take significantly less computational time than numerical simulation analysis with an accuracy within 3% of the numerical model.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coupled thermo-mechanical model for warm single-point incremental forming process\",\"authors\":\"Narinder Kumar, Mohit Mahala, Anupam Agrawal\",\"doi\":\"10.1007/s43452-024-01107-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single point incremental forming (SPIF) is a low-cost, low-volume forming technique that has gained the attention of researchers over the past two decades. However, it has primarily been utilized for ductile materials such as aluminum and steel alloys and has yet to be extensively explored for hard-to-form materials such as magnesium (Mg) alloys, which are widely used in aviation and automotive industries. The hexagonal close-packed structure of these alloys makes it challenging to deform at room temperature. Studies have shown that the formability of Mg alloys can be increased under warm forming conditions. The analytical model needs to be developed to understand the effect of temperature on material properties and process parameters and their dependencies on each other. The present work proposes an analytical thermal model to predict in-plane strains during the warm SPIF process of magnesium (AZ31B) alloy. A coupled thermo-mechanical numerical simulation model was developed using ABAQUS/EXPLICIT<sup>®</sup> software to estimate in-plane strains and thickness distribution. The Johnson–Cook model was applied to define the fracture criterion and the constitutive model. The predictions of the analytical and numerical models developed in this study were compared with experimental results. Further, the study investigated the impact of step depth, tool diameter, and wall angle on formability and thickness distribution. The predictions from the model developed in this study take significantly less computational time than numerical simulation analysis with an accuracy within 3% of the numerical model.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01107-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01107-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A coupled thermo-mechanical model for warm single-point incremental forming process
Single point incremental forming (SPIF) is a low-cost, low-volume forming technique that has gained the attention of researchers over the past two decades. However, it has primarily been utilized for ductile materials such as aluminum and steel alloys and has yet to be extensively explored for hard-to-form materials such as magnesium (Mg) alloys, which are widely used in aviation and automotive industries. The hexagonal close-packed structure of these alloys makes it challenging to deform at room temperature. Studies have shown that the formability of Mg alloys can be increased under warm forming conditions. The analytical model needs to be developed to understand the effect of temperature on material properties and process parameters and their dependencies on each other. The present work proposes an analytical thermal model to predict in-plane strains during the warm SPIF process of magnesium (AZ31B) alloy. A coupled thermo-mechanical numerical simulation model was developed using ABAQUS/EXPLICIT® software to estimate in-plane strains and thickness distribution. The Johnson–Cook model was applied to define the fracture criterion and the constitutive model. The predictions of the analytical and numerical models developed in this study were compared with experimental results. Further, the study investigated the impact of step depth, tool diameter, and wall angle on formability and thickness distribution. The predictions from the model developed in this study take significantly less computational time than numerical simulation analysis with an accuracy within 3% of the numerical model.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.