Manar Fouli Gaber Ibrahim, Fatma F. Ali, Sayed Fouad El-Sheikh Ali, Emad S. Shaker, Hemdan I. Mahmoud, Fatma ElZahraa Mohammed Abdellatif, Sahar A. Mokhemer
{"title":"红火果提取物改善d -半乳糖诱导衰老大鼠氧化应激和炎症的神经保护作用:生化、组织学和免疫组织化学研究","authors":"Manar Fouli Gaber Ibrahim, Fatma F. Ali, Sayed Fouad El-Sheikh Ali, Emad S. Shaker, Hemdan I. Mahmoud, Fatma ElZahraa Mohammed Abdellatif, Sahar A. Mokhemer","doi":"10.1007/s10735-024-10316-z","DOIUrl":null,"url":null,"abstract":"<div><p>Aging is a worldwide socioeconomic burden. Cerebellar aging is an enigma contributing to many behavioral aging disorders, hence is its hindering by prophylactic measurements is a crucial geriatric research target. Red dragon fruit (RDF) is a tropical fruit with antioxidant, anti-inflammatory and anti-apoptotic properties. This study aimed to determine the protective effect of RDF extract against cerebellar aging. Thirty-two male albino rats were randomly allocated into 4 groups: Control, RDF, aged and RDF-aged groups. Aged group revealed structural distortion affecting cerebellar layers including a significant (P < 0.05) decrease in Purkinje cells number and decrease in granular cell layer thickness by comparison to the control and RDF groups. Additionally, distorted capillary endothelium, and defective myelination were noticed. Interestingly, cerebellar active caspase-3, iNOS, MDA and 3-NT and serum TNF-α levels significantly increased with aging by comparison to the control and RDF groups (all P < 0.05). Biochemical analysis revealed a significant (P < 0.05) decrease in cerebellar SOD and serum GSH levels in aged rats. RDF extract remarkably ameliorated most of the neuronal degenerative changes with a significant (P < 0.05) increase in Purkinje cells numbers, and granular cell layer thickness by comparison to the aged group. Furthermore, it resulted in a significant (P < 0.05) decrease in cerebellum expression of active caspase-3, iNOS, MDA, 3-NT, and serum TNF-α levels associated with a significant (P < 0.05) increase in cerebellar SOD and serum GSH levels by comparison to the aged group. To the best of our knowledge this is the first study showing a neuroprotective effect for RDF against cerebellar aging. RDF might be effective in attenuation of age-induced cerebellar degenerative changes through its anti-apoptotic, antioxidant and anti-inflammatory effects.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective effect of red dragon fruit extract ameliorates oxidative stress and inflammation in D-galactose-induced aging rat model: biochemical, histological and immunohistochemical study\",\"authors\":\"Manar Fouli Gaber Ibrahim, Fatma F. Ali, Sayed Fouad El-Sheikh Ali, Emad S. Shaker, Hemdan I. Mahmoud, Fatma ElZahraa Mohammed Abdellatif, Sahar A. Mokhemer\",\"doi\":\"10.1007/s10735-024-10316-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aging is a worldwide socioeconomic burden. Cerebellar aging is an enigma contributing to many behavioral aging disorders, hence is its hindering by prophylactic measurements is a crucial geriatric research target. Red dragon fruit (RDF) is a tropical fruit with antioxidant, anti-inflammatory and anti-apoptotic properties. This study aimed to determine the protective effect of RDF extract against cerebellar aging. Thirty-two male albino rats were randomly allocated into 4 groups: Control, RDF, aged and RDF-aged groups. Aged group revealed structural distortion affecting cerebellar layers including a significant (P < 0.05) decrease in Purkinje cells number and decrease in granular cell layer thickness by comparison to the control and RDF groups. Additionally, distorted capillary endothelium, and defective myelination were noticed. Interestingly, cerebellar active caspase-3, iNOS, MDA and 3-NT and serum TNF-α levels significantly increased with aging by comparison to the control and RDF groups (all P < 0.05). Biochemical analysis revealed a significant (P < 0.05) decrease in cerebellar SOD and serum GSH levels in aged rats. RDF extract remarkably ameliorated most of the neuronal degenerative changes with a significant (P < 0.05) increase in Purkinje cells numbers, and granular cell layer thickness by comparison to the aged group. Furthermore, it resulted in a significant (P < 0.05) decrease in cerebellum expression of active caspase-3, iNOS, MDA, 3-NT, and serum TNF-α levels associated with a significant (P < 0.05) increase in cerebellar SOD and serum GSH levels by comparison to the aged group. To the best of our knowledge this is the first study showing a neuroprotective effect for RDF against cerebellar aging. RDF might be effective in attenuation of age-induced cerebellar degenerative changes through its anti-apoptotic, antioxidant and anti-inflammatory effects.</p></div>\",\"PeriodicalId\":650,\"journal\":{\"name\":\"Journal of Molecular Histology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Histology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10735-024-10316-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10316-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Neuroprotective effect of red dragon fruit extract ameliorates oxidative stress and inflammation in D-galactose-induced aging rat model: biochemical, histological and immunohistochemical study
Aging is a worldwide socioeconomic burden. Cerebellar aging is an enigma contributing to many behavioral aging disorders, hence is its hindering by prophylactic measurements is a crucial geriatric research target. Red dragon fruit (RDF) is a tropical fruit with antioxidant, anti-inflammatory and anti-apoptotic properties. This study aimed to determine the protective effect of RDF extract against cerebellar aging. Thirty-two male albino rats were randomly allocated into 4 groups: Control, RDF, aged and RDF-aged groups. Aged group revealed structural distortion affecting cerebellar layers including a significant (P < 0.05) decrease in Purkinje cells number and decrease in granular cell layer thickness by comparison to the control and RDF groups. Additionally, distorted capillary endothelium, and defective myelination were noticed. Interestingly, cerebellar active caspase-3, iNOS, MDA and 3-NT and serum TNF-α levels significantly increased with aging by comparison to the control and RDF groups (all P < 0.05). Biochemical analysis revealed a significant (P < 0.05) decrease in cerebellar SOD and serum GSH levels in aged rats. RDF extract remarkably ameliorated most of the neuronal degenerative changes with a significant (P < 0.05) increase in Purkinje cells numbers, and granular cell layer thickness by comparison to the aged group. Furthermore, it resulted in a significant (P < 0.05) decrease in cerebellum expression of active caspase-3, iNOS, MDA, 3-NT, and serum TNF-α levels associated with a significant (P < 0.05) increase in cerebellar SOD and serum GSH levels by comparison to the aged group. To the best of our knowledge this is the first study showing a neuroprotective effect for RDF against cerebellar aging. RDF might be effective in attenuation of age-induced cerebellar degenerative changes through its anti-apoptotic, antioxidant and anti-inflammatory effects.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.