Zecheng Cao, Xiaojiao Kang, Wei Lü, Hongcheng Wang
{"title":"环保型柔性 Ag-In-Zn-S/ZnS QD-WPU 复合薄膜的制备与发光特性","authors":"Zecheng Cao, Xiaojiao Kang, Wei Lü, Hongcheng Wang","doi":"10.1016/j.polymer.2024.127975","DOIUrl":null,"url":null,"abstract":"With the advancement of economic development and the increasing complexity of commodity distribution, efficient and precise anti-counterfeiting measures have garnered significant attention in recent decades. This challenge necessitates the development of flexible films exhibiting both superior mechanical and optical properties to accommodate various anti-counterfeiting applications. This study introduces a composite film comprised of waterborne polyurethane (WPU), gelatin quantum dots (QDs), and glycerol. Glycerol, employed as a plasticizer, enhances the film's plasticity by disrupting hydrogen bonds within the matrix. The tensile strength decreased from 7.7 MPa to 1.73 MPa, while the elongation at break increased from 410% to 656%, compared to the samples without glycerol. The resulting films exhibit advantageous properties, including facile preparation, high transmittance, excellent optical properties, and excellent mechanical performance. Additionally, the photoluminescence intensity decreased by only 15% after being placed in air for 30 days. They demonstrate commendable stability under ambient temperature and environmental conditions, making them suitable for diverse and intricate anti-counterfeiting applications. The emission wavelength of the composite films was tuned by adjusting the cation ratio of the QDs, and the mechanical properties can be adjusted by varying the QD and glycerol contents. This work offers valuable insights for the development of advanced flexible materials for anti-counterfeiting purposes.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"40 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly fabrication and luminescent properties of flexible Ag-In-Zn-S/ZnS QD-WPU composite film\",\"authors\":\"Zecheng Cao, Xiaojiao Kang, Wei Lü, Hongcheng Wang\",\"doi\":\"10.1016/j.polymer.2024.127975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of economic development and the increasing complexity of commodity distribution, efficient and precise anti-counterfeiting measures have garnered significant attention in recent decades. This challenge necessitates the development of flexible films exhibiting both superior mechanical and optical properties to accommodate various anti-counterfeiting applications. This study introduces a composite film comprised of waterborne polyurethane (WPU), gelatin quantum dots (QDs), and glycerol. Glycerol, employed as a plasticizer, enhances the film's plasticity by disrupting hydrogen bonds within the matrix. The tensile strength decreased from 7.7 MPa to 1.73 MPa, while the elongation at break increased from 410% to 656%, compared to the samples without glycerol. The resulting films exhibit advantageous properties, including facile preparation, high transmittance, excellent optical properties, and excellent mechanical performance. Additionally, the photoluminescence intensity decreased by only 15% after being placed in air for 30 days. They demonstrate commendable stability under ambient temperature and environmental conditions, making them suitable for diverse and intricate anti-counterfeiting applications. The emission wavelength of the composite films was tuned by adjusting the cation ratio of the QDs, and the mechanical properties can be adjusted by varying the QD and glycerol contents. This work offers valuable insights for the development of advanced flexible materials for anti-counterfeiting purposes.\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.polymer.2024.127975\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127975","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Eco-friendly fabrication and luminescent properties of flexible Ag-In-Zn-S/ZnS QD-WPU composite film
With the advancement of economic development and the increasing complexity of commodity distribution, efficient and precise anti-counterfeiting measures have garnered significant attention in recent decades. This challenge necessitates the development of flexible films exhibiting both superior mechanical and optical properties to accommodate various anti-counterfeiting applications. This study introduces a composite film comprised of waterborne polyurethane (WPU), gelatin quantum dots (QDs), and glycerol. Glycerol, employed as a plasticizer, enhances the film's plasticity by disrupting hydrogen bonds within the matrix. The tensile strength decreased from 7.7 MPa to 1.73 MPa, while the elongation at break increased from 410% to 656%, compared to the samples without glycerol. The resulting films exhibit advantageous properties, including facile preparation, high transmittance, excellent optical properties, and excellent mechanical performance. Additionally, the photoluminescence intensity decreased by only 15% after being placed in air for 30 days. They demonstrate commendable stability under ambient temperature and environmental conditions, making them suitable for diverse and intricate anti-counterfeiting applications. The emission wavelength of the composite films was tuned by adjusting the cation ratio of the QDs, and the mechanical properties can be adjusted by varying the QD and glycerol contents. This work offers valuable insights for the development of advanced flexible materials for anti-counterfeiting purposes.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.