{"title":"Fasciclin 2 是表皮生长因子受体表达水平的开关,可控制果蝇器官的形状和大小。","authors":"Luis Garcia-Alonso","doi":"10.1371/journal.pone.0309891","DOIUrl":null,"url":null,"abstract":"<p><p>Fasciclin 2 (Drosophila NCAM) is a homophilic Cell Adhesion Molecule expressed at moderate levels in the proliferating epithelial cells of imaginal discs, where it engages EGFR in a cell autonomous auto-stimulatory loop that promotes growth along larval development. In addition, Fasciclin 2 is expressed at high levels in the pre-differentiating cells of imaginal discs. Gain-of-function genetic analysis shows that Fasciclin 2 acts as a non-cell autonomous repressor of EGFR when high expression levels are induced during imaginal disc growth. Loss-of-function genetic analysis shows that this Fasciclin 2 functional facet is required at the end of larval development and it is mediated by interaction with IgCAMs CG15630 (Fipi) and CG33543 (Elff). Thus, Fasciclin 2 bears two complementary functional roles which correspond with different levels of expression. The combined results from loss- and gain-of-function analyses suggest a scenario where the Fasciclin 2/EGFR cell autonomous auto-stimulatory loop promotes cell proliferation until reaching a Fasciclin 2 expression threshold where its non-cell autonomous function stops growth. Thus, cellular integration of Fasciclin 2 autonomous and non-cell autonomous signaling from neighbor cells may be a key regulator component to orchestrate the rate of intercalary cell proliferation and the final size and shape of an organ.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0309891"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661588/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fasciclin 2 functions as an expression-level switch on EGFR to control organ shape and size in Drosophila.\",\"authors\":\"Luis Garcia-Alonso\",\"doi\":\"10.1371/journal.pone.0309891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fasciclin 2 (Drosophila NCAM) is a homophilic Cell Adhesion Molecule expressed at moderate levels in the proliferating epithelial cells of imaginal discs, where it engages EGFR in a cell autonomous auto-stimulatory loop that promotes growth along larval development. In addition, Fasciclin 2 is expressed at high levels in the pre-differentiating cells of imaginal discs. Gain-of-function genetic analysis shows that Fasciclin 2 acts as a non-cell autonomous repressor of EGFR when high expression levels are induced during imaginal disc growth. Loss-of-function genetic analysis shows that this Fasciclin 2 functional facet is required at the end of larval development and it is mediated by interaction with IgCAMs CG15630 (Fipi) and CG33543 (Elff). Thus, Fasciclin 2 bears two complementary functional roles which correspond with different levels of expression. The combined results from loss- and gain-of-function analyses suggest a scenario where the Fasciclin 2/EGFR cell autonomous auto-stimulatory loop promotes cell proliferation until reaching a Fasciclin 2 expression threshold where its non-cell autonomous function stops growth. Thus, cellular integration of Fasciclin 2 autonomous and non-cell autonomous signaling from neighbor cells may be a key regulator component to orchestrate the rate of intercalary cell proliferation and the final size and shape of an organ.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"19 12\",\"pages\":\"e0309891\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661588/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0309891\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0309891","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fasciclin 2 functions as an expression-level switch on EGFR to control organ shape and size in Drosophila.
Fasciclin 2 (Drosophila NCAM) is a homophilic Cell Adhesion Molecule expressed at moderate levels in the proliferating epithelial cells of imaginal discs, where it engages EGFR in a cell autonomous auto-stimulatory loop that promotes growth along larval development. In addition, Fasciclin 2 is expressed at high levels in the pre-differentiating cells of imaginal discs. Gain-of-function genetic analysis shows that Fasciclin 2 acts as a non-cell autonomous repressor of EGFR when high expression levels are induced during imaginal disc growth. Loss-of-function genetic analysis shows that this Fasciclin 2 functional facet is required at the end of larval development and it is mediated by interaction with IgCAMs CG15630 (Fipi) and CG33543 (Elff). Thus, Fasciclin 2 bears two complementary functional roles which correspond with different levels of expression. The combined results from loss- and gain-of-function analyses suggest a scenario where the Fasciclin 2/EGFR cell autonomous auto-stimulatory loop promotes cell proliferation until reaching a Fasciclin 2 expression threshold where its non-cell autonomous function stops growth. Thus, cellular integration of Fasciclin 2 autonomous and non-cell autonomous signaling from neighbor cells may be a key regulator component to orchestrate the rate of intercalary cell proliferation and the final size and shape of an organ.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage