{"title":"报纸背后的人--亚历杭德罗-贝里奥(Alejandro Berrio)和大卫-麦克雷(David McClay)。","authors":"","doi":"10.1242/dev.204580","DOIUrl":null,"url":null,"abstract":"<p><p>Early sea urchin embryos contain cells called micromeres, which play an important role in the formation of three mesodermal cell types: skeletogenic, blastocoelar and pigment cells. When micromeres are removed, the embryo can replace the skeletogenic and blastocoelar cells via a process called 'transfating', whereby other cells in the embryo step in to take on new roles. However, the pigment cells do not reappear, and the reasons for this are unclear. A new paper in Development reveals how the timing of developmental signals can affect transfating outcomes. To learn more about the story behind the paper, we caught up with first author Alejandro Berrio and corresponding author David McClay, the Arthur S. Pearse Professor Emeritus of Biology at Duke University, USA.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 24","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The people behind the papers - Alejandro Berrio and David McClay.\",\"authors\":\"\",\"doi\":\"10.1242/dev.204580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early sea urchin embryos contain cells called micromeres, which play an important role in the formation of three mesodermal cell types: skeletogenic, blastocoelar and pigment cells. When micromeres are removed, the embryo can replace the skeletogenic and blastocoelar cells via a process called 'transfating', whereby other cells in the embryo step in to take on new roles. However, the pigment cells do not reappear, and the reasons for this are unclear. A new paper in Development reveals how the timing of developmental signals can affect transfating outcomes. To learn more about the story behind the paper, we caught up with first author Alejandro Berrio and corresponding author David McClay, the Arthur S. Pearse Professor Emeritus of Biology at Duke University, USA.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\"151 24\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204580\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204580","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
早期海胆胚胎中含有称为微粒的细胞,它们在形成三种中胚层细胞类型(骨骼细胞、胚泡细胞和色素细胞)的过程中发挥着重要作用。当微粒被移除时,胚胎可以通过一种叫做 "转移 "的过程来替代骨骼细胞和胚泡细胞,胚胎中的其他细胞会通过这种方法来承担新的角色。然而,色素细胞不会重新出现,其原因尚不清楚。发育》(Development)杂志上的一篇新论文揭示了发育信号的时间如何影响转移的结果。为了进一步了解论文背后的故事,我们采访了论文的第一作者亚历杭德罗-贝里奥(Alejandro Berrio)和通讯作者、美国杜克大学亚瑟-皮尔斯(Arthur S. Pearse)生物学名誉教授大卫-麦克雷(David McClay)。
The people behind the papers - Alejandro Berrio and David McClay.
Early sea urchin embryos contain cells called micromeres, which play an important role in the formation of three mesodermal cell types: skeletogenic, blastocoelar and pigment cells. When micromeres are removed, the embryo can replace the skeletogenic and blastocoelar cells via a process called 'transfating', whereby other cells in the embryo step in to take on new roles. However, the pigment cells do not reappear, and the reasons for this are unclear. A new paper in Development reveals how the timing of developmental signals can affect transfating outcomes. To learn more about the story behind the paper, we caught up with first author Alejandro Berrio and corresponding author David McClay, the Arthur S. Pearse Professor Emeritus of Biology at Duke University, USA.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.