Brenno L. Nascimento, Iris S. Santos, Luiara L. Santos, Matheus M. S. Reis, Ihana G. C. de Jesus, Sandro Griza
{"title":"循环载荷频率对退火和预应变奥氏体ss304疲劳裂纹形核和扩展的影响","authors":"Brenno L. Nascimento, Iris S. Santos, Luiara L. Santos, Matheus M. S. Reis, Ihana G. C. de Jesus, Sandro Griza","doi":"10.1111/ffe.14484","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The austenitic stainless steels are widely used in several engineering fields due to their high ductility, corrosion and high temperature performance. Despite its noble properties, components manufactured in austenitic stainless steel are subject to fatigue failure. Studies indicate that loading frequency can impact the austenitic stainless steel fatigue performance. In this scenario, the present study aims to evaluate the effect of frequencies of 3 and 30 Hz on the fatigue behavior of SS 304 alloy under load control in order to identify in which fatigue stage the effect is outstanding. Therefore, fatigue and fracture mechanics tests were evaluated on the alloy annealed at 1000°C. Furthermore, fatigue tests were also applied to the alloy after previous tensile plastic strain of 0.5. The analyses denoted a significant reduction in fatigue strength with increasing frequency, especially for the strained alloy. Fatigue crack nucleation is encouraged with greater load frequency. This behavior may be attributed to strain-induced martensite and other strain mechanisms such as twinning and slip bands that are encouraged by lower strain rates but are relieved by auto-heating achieved in higher frequencies, as mentioned in the literature, which decrease the strength to fatigue nucleation.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 1","pages":"441-453"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cyclic Load Frequency on the Fatigue Crack Nucleation and Growth of Annealed and Prestrained Austenitic SS 304\",\"authors\":\"Brenno L. Nascimento, Iris S. Santos, Luiara L. Santos, Matheus M. S. Reis, Ihana G. C. de Jesus, Sandro Griza\",\"doi\":\"10.1111/ffe.14484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The austenitic stainless steels are widely used in several engineering fields due to their high ductility, corrosion and high temperature performance. Despite its noble properties, components manufactured in austenitic stainless steel are subject to fatigue failure. Studies indicate that loading frequency can impact the austenitic stainless steel fatigue performance. In this scenario, the present study aims to evaluate the effect of frequencies of 3 and 30 Hz on the fatigue behavior of SS 304 alloy under load control in order to identify in which fatigue stage the effect is outstanding. Therefore, fatigue and fracture mechanics tests were evaluated on the alloy annealed at 1000°C. Furthermore, fatigue tests were also applied to the alloy after previous tensile plastic strain of 0.5. The analyses denoted a significant reduction in fatigue strength with increasing frequency, especially for the strained alloy. Fatigue crack nucleation is encouraged with greater load frequency. This behavior may be attributed to strain-induced martensite and other strain mechanisms such as twinning and slip bands that are encouraged by lower strain rates but are relieved by auto-heating achieved in higher frequencies, as mentioned in the literature, which decrease the strength to fatigue nucleation.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 1\",\"pages\":\"441-453\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14484\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14484","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of Cyclic Load Frequency on the Fatigue Crack Nucleation and Growth of Annealed and Prestrained Austenitic SS 304
The austenitic stainless steels are widely used in several engineering fields due to their high ductility, corrosion and high temperature performance. Despite its noble properties, components manufactured in austenitic stainless steel are subject to fatigue failure. Studies indicate that loading frequency can impact the austenitic stainless steel fatigue performance. In this scenario, the present study aims to evaluate the effect of frequencies of 3 and 30 Hz on the fatigue behavior of SS 304 alloy under load control in order to identify in which fatigue stage the effect is outstanding. Therefore, fatigue and fracture mechanics tests were evaluated on the alloy annealed at 1000°C. Furthermore, fatigue tests were also applied to the alloy after previous tensile plastic strain of 0.5. The analyses denoted a significant reduction in fatigue strength with increasing frequency, especially for the strained alloy. Fatigue crack nucleation is encouraged with greater load frequency. This behavior may be attributed to strain-induced martensite and other strain mechanisms such as twinning and slip bands that are encouraged by lower strain rates but are relieved by auto-heating achieved in higher frequencies, as mentioned in the literature, which decrease the strength to fatigue nucleation.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.