Jian Chen, Yilong Liang, Shaolong Li, Ming Yang, Yuguan Sun
{"title":"碳氮复合渗浸20CrNi2Mo钢的滚动接触疲劳行为","authors":"Jian Chen, Yilong Liang, Shaolong Li, Ming Yang, Yuguan Sun","doi":"10.1111/ffe.14460","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, a new type of composite infiltration process was adopted for 20CrNi2Mo steel. Rolling contact fatigue (RCF) tests were carried out on the specimens treated with carburizing (C) and composite infiltration with carburizing and nitriding (C-N). The results showed that after C and C-N treatments were performed, the surface microhardness was increased by 78% and 114%, respectively, and the maximum CRS were −220 and −530 MPa. Moreover, the residual austenite volume fraction was controlled to approximately 10% for each treated sample. The fatigue limit of the C-N sample was 11.3% higher than that of the C sample. The fatigue failure mechanisms are caused by the maximum shear stress distribution and surface roughness. The surface layer of the C-N sample with higher hardness and more compressive residual stress inhibited the initiation of fatigue cracks, and the appropriate residual austenite in the carbon-nitrogen infiltrated layer inhibited the propagation of fatigue cracks.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 1","pages":"296-311"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rolling Contact Fatigue Behaviors of 20CrNi2Mo Steel by a New Carbon and Nitrogen Composite Infiltration Process\",\"authors\":\"Jian Chen, Yilong Liang, Shaolong Li, Ming Yang, Yuguan Sun\",\"doi\":\"10.1111/ffe.14460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, a new type of composite infiltration process was adopted for 20CrNi2Mo steel. Rolling contact fatigue (RCF) tests were carried out on the specimens treated with carburizing (C) and composite infiltration with carburizing and nitriding (C-N). The results showed that after C and C-N treatments were performed, the surface microhardness was increased by 78% and 114%, respectively, and the maximum CRS were −220 and −530 MPa. Moreover, the residual austenite volume fraction was controlled to approximately 10% for each treated sample. The fatigue limit of the C-N sample was 11.3% higher than that of the C sample. The fatigue failure mechanisms are caused by the maximum shear stress distribution and surface roughness. The surface layer of the C-N sample with higher hardness and more compressive residual stress inhibited the initiation of fatigue cracks, and the appropriate residual austenite in the carbon-nitrogen infiltrated layer inhibited the propagation of fatigue cracks.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 1\",\"pages\":\"296-311\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14460\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14460","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Rolling Contact Fatigue Behaviors of 20CrNi2Mo Steel by a New Carbon and Nitrogen Composite Infiltration Process
In this paper, a new type of composite infiltration process was adopted for 20CrNi2Mo steel. Rolling contact fatigue (RCF) tests were carried out on the specimens treated with carburizing (C) and composite infiltration with carburizing and nitriding (C-N). The results showed that after C and C-N treatments were performed, the surface microhardness was increased by 78% and 114%, respectively, and the maximum CRS were −220 and −530 MPa. Moreover, the residual austenite volume fraction was controlled to approximately 10% for each treated sample. The fatigue limit of the C-N sample was 11.3% higher than that of the C sample. The fatigue failure mechanisms are caused by the maximum shear stress distribution and surface roughness. The surface layer of the C-N sample with higher hardness and more compressive residual stress inhibited the initiation of fatigue cracks, and the appropriate residual austenite in the carbon-nitrogen infiltrated layer inhibited the propagation of fatigue cracks.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.