基于门控石墨烯微波波导的高灵敏度葡萄糖传感器

Patrik Gubeljak, Tianhui Xu, Jan Wlodarczyk, William Eustace, Oliver J. Burton, Stephan Hofmann, George G. Malliaras, Antonio Lombardo
{"title":"基于门控石墨烯微波波导的高灵敏度葡萄糖传感器","authors":"Patrik Gubeljak,&nbsp;Tianhui Xu,&nbsp;Jan Wlodarczyk,&nbsp;William Eustace,&nbsp;Oliver J. Burton,&nbsp;Stephan Hofmann,&nbsp;George G. Malliaras,&nbsp;Antonio Lombardo","doi":"10.1002/adsr.202400091","DOIUrl":null,"url":null,"abstract":"<p>A novel approach is demonstrated to identify glucose concentration in aqueous solutions based on the combined effect of its frequency-dependent interaction with microwaves propagating in graphene channels and the modification of graphene radio frequency (RF) conductivity caused by physisorbed molecules. This approach combines broadband microwave sensing and chemical field effect transistor sensing in a single device, leading to information-rich, multidimensional datasets in the form of scattering parameters. A sensitivity of 7.30 dB(mg/L)<sup>−1</sup> is achieved, significantly higher than metallic state-of-the-art RF sensors. Different machine learning methods are applied to the raw, multidimensional datasets to infer concentrations of the analyte, without the need for parasitic effect removals via de-embedding or circuit modeling, and a classification accuracy of 100% is achieved for aqueous glucose solutions with a concentration variation of 0.09 mgL<sup>−1</sup>.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400091","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive Glucose Sensors Based on Gated Graphene Microwave Waveguides\",\"authors\":\"Patrik Gubeljak,&nbsp;Tianhui Xu,&nbsp;Jan Wlodarczyk,&nbsp;William Eustace,&nbsp;Oliver J. Burton,&nbsp;Stephan Hofmann,&nbsp;George G. Malliaras,&nbsp;Antonio Lombardo\",\"doi\":\"10.1002/adsr.202400091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel approach is demonstrated to identify glucose concentration in aqueous solutions based on the combined effect of its frequency-dependent interaction with microwaves propagating in graphene channels and the modification of graphene radio frequency (RF) conductivity caused by physisorbed molecules. This approach combines broadband microwave sensing and chemical field effect transistor sensing in a single device, leading to information-rich, multidimensional datasets in the form of scattering parameters. A sensitivity of 7.30 dB(mg/L)<sup>−1</sup> is achieved, significantly higher than metallic state-of-the-art RF sensors. Different machine learning methods are applied to the raw, multidimensional datasets to infer concentrations of the analyte, without the need for parasitic effect removals via de-embedding or circuit modeling, and a classification accuracy of 100% is achieved for aqueous glucose solutions with a concentration variation of 0.09 mgL<sup>−1</sup>.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"3 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400091\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法来识别水溶液中的葡萄糖浓度,该方法基于其与石墨烯通道中传播的微波的频率依赖相互作用以及物理吸收分子引起的石墨烯射频(RF)电导率的改变的综合效应。该方法将宽带微波传感和化学场效应晶体管传感结合在一个设备中,以散射参数的形式产生信息丰富的多维数据集。灵敏度达到7.30 dB(mg/L)−1,显著高于金属射频传感器。不同的机器学习方法应用于原始的多维数据集来推断分析物的浓度,而不需要通过去嵌入或电路建模来去除寄生效应,并且对于浓度变化为0.09 mgL−1的葡萄糖水溶液,分类精度达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Sensitive Glucose Sensors Based on Gated Graphene Microwave Waveguides

Highly Sensitive Glucose Sensors Based on Gated Graphene Microwave Waveguides

A novel approach is demonstrated to identify glucose concentration in aqueous solutions based on the combined effect of its frequency-dependent interaction with microwaves propagating in graphene channels and the modification of graphene radio frequency (RF) conductivity caused by physisorbed molecules. This approach combines broadband microwave sensing and chemical field effect transistor sensing in a single device, leading to information-rich, multidimensional datasets in the form of scattering parameters. A sensitivity of 7.30 dB(mg/L)−1 is achieved, significantly higher than metallic state-of-the-art RF sensors. Different machine learning methods are applied to the raw, multidimensional datasets to infer concentrations of the analyte, without the need for parasitic effect removals via de-embedding or circuit modeling, and a classification accuracy of 100% is achieved for aqueous glucose solutions with a concentration variation of 0.09 mgL−1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信