{"title":"基于yolov8的输电线路螺栓检测增强算法","authors":"Guoxiang Hua, Huai Zhang, Chen Huang, Moji Pan, Jiyuan Yan, Haisen Zhao","doi":"10.1049/gtd2.13330","DOIUrl":null,"url":null,"abstract":"<p>The current bolt detection for overhead work robots used for transmission lines faces the problems of lightweight algorithms and high accuracy of target detection. To address these challenges, this paper proposes a lightweight bolt detection algorithm based on improved YOLOv8 (you only look once v8) model. Firstly, the C2f module in the feature extraction network is integrated with the self-calibrated convolution module, and the model is streamlined by reducing spatial and channel redundancies of the network through the SRU and CUR mechanisms in the module. Secondly, the P2 small object detection layer is introduced into the neck structure and the BiFPN network structure is incorporated to enhance the bidirectional connection paths, thereby promoting the upward and downward propagation of features. It improves the accuracy of the network for bolt-small target detection. The experimental results show that, compared to the original YOLOv8 model, the proposed algorithm demonstrates superior performance on a self-collected dataset. The mAP accuracy is improved in this paper by 9.9%, while the number of model parameters and the model size is reduced by 0.973 × 10<sup>6</sup> and 1.7 MB, respectively. The improved algorithm improves the accuracy of the bolt detection while reducing the computation complexity to achieve more lightweight model.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 24","pages":"4065-4077"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13330","citationCount":"0","resultStr":"{\"title\":\"An enhanced YOLOv8-based bolt detection algorithm for transmission line\",\"authors\":\"Guoxiang Hua, Huai Zhang, Chen Huang, Moji Pan, Jiyuan Yan, Haisen Zhao\",\"doi\":\"10.1049/gtd2.13330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current bolt detection for overhead work robots used for transmission lines faces the problems of lightweight algorithms and high accuracy of target detection. To address these challenges, this paper proposes a lightweight bolt detection algorithm based on improved YOLOv8 (you only look once v8) model. Firstly, the C2f module in the feature extraction network is integrated with the self-calibrated convolution module, and the model is streamlined by reducing spatial and channel redundancies of the network through the SRU and CUR mechanisms in the module. Secondly, the P2 small object detection layer is introduced into the neck structure and the BiFPN network structure is incorporated to enhance the bidirectional connection paths, thereby promoting the upward and downward propagation of features. It improves the accuracy of the network for bolt-small target detection. The experimental results show that, compared to the original YOLOv8 model, the proposed algorithm demonstrates superior performance on a self-collected dataset. The mAP accuracy is improved in this paper by 9.9%, while the number of model parameters and the model size is reduced by 0.973 × 10<sup>6</sup> and 1.7 MB, respectively. The improved algorithm improves the accuracy of the bolt detection while reducing the computation complexity to achieve more lightweight model.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 24\",\"pages\":\"4065-4077\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13330\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13330\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13330","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An enhanced YOLOv8-based bolt detection algorithm for transmission line
The current bolt detection for overhead work robots used for transmission lines faces the problems of lightweight algorithms and high accuracy of target detection. To address these challenges, this paper proposes a lightweight bolt detection algorithm based on improved YOLOv8 (you only look once v8) model. Firstly, the C2f module in the feature extraction network is integrated with the self-calibrated convolution module, and the model is streamlined by reducing spatial and channel redundancies of the network through the SRU and CUR mechanisms in the module. Secondly, the P2 small object detection layer is introduced into the neck structure and the BiFPN network structure is incorporated to enhance the bidirectional connection paths, thereby promoting the upward and downward propagation of features. It improves the accuracy of the network for bolt-small target detection. The experimental results show that, compared to the original YOLOv8 model, the proposed algorithm demonstrates superior performance on a self-collected dataset. The mAP accuracy is improved in this paper by 9.9%, while the number of model parameters and the model size is reduced by 0.973 × 106 and 1.7 MB, respectively. The improved algorithm improves the accuracy of the bolt detection while reducing the computation complexity to achieve more lightweight model.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf